String Theory 2007 Tutorial Sheet 6

Superalgebras

The following problems deal with Lie superalgebras, particularly in supergravity and string theories. A great reference for the uses of the superalgebra is [2], which might be useful for some of the problems.

Problem 6.1 Let $g = g_0 \oplus g_1$ be a Lie superalgebra.

- a. Show that $h_0 := [g_1, g_1]$ is an ideal of g_0 , whence $h = h_0 \oplus g_1$ is a superideal of g.
- b. Show that $\dim \mathfrak{h}_0 \leq \frac{1}{2} \dim \mathfrak{g}_1 (\dim \mathfrak{g}_1 + 1)$.
- c. Let $\dim \mathfrak{h}_0 = \frac{1}{2} \dim \mathfrak{g}_1(\dim \mathfrak{g}_1 + 1)$, so that the Lie bracket $[,]: S^2\mathfrak{g}_1 \to \mathfrak{h}_0$ is an isomorphism. Show that relative to a basis Q_a for \mathfrak{g}_1 , and $Z_{ab} := [Q_a, Q_b]$ for \mathfrak{h}_0 , the Lie superalgebra \mathfrak{h} has the following structure:

$$\begin{split} [Z_{ab},Q_c] &= \omega_{bc}Q_a + \omega_{ac}Q_b \\ [Z_{ab},Z_{cd}] &= \omega_{bc}Z_{ad} + \omega_{ac}Z_{bd} + \omega_{ad}Z_{bc} + \omega_{bd}Z_{ac} \end{split}$$

for some $\omega_{ab}=-\omega_{ba}$. Show furthermore that the corresponding $\omega\in\Lambda^2\mathfrak{g}_1^*$ is \mathfrak{h}_0 -invariant. Is ω \mathfrak{h} -invariant?

(*Hint*: If you get stuck, you might want to look at the Appendix of [1].)

Problem 6.2 Consider the eleven-dimensional Poincaré superalgebra

$$[Q_a,Q_b] = \gamma^{\mu}_{ab} P_{\mu} ,$$

where Q_a transforms in the spinor representation Δ of Spin(1, 10).

- a. Show that the massless supermultiplet induced from the trivial representation of the little group Spin(9) corresponds to the massless representation of the Poincaré group induced from the representation $S_0^2 \oplus \Lambda^3 \oplus R$ of Spin(9), where S_0^2 denotes the symmetric traceless tensors and R is the kernel of the Clifford multiplication $\Lambda^1 \otimes \Delta \to \Delta$, where Δ is the spinor representation of Spin(9). (*Hint*: Show that the supermultiplet in question is isomorphic to the irreducible Clifford module $\mathfrak M$ of $\mathrm{C}\ell(16)$ and then simply decompose $\mathfrak M$ under Spin(9) using the (maximal) embedding $\mathfrak{spin}(9) < \mathfrak{spin}(16)$.)
- b. Interpret the resulting representations in terms of eleven-dimensional fields.
- c. Show that the massless supermultiplet induced from a finite-dimensional representation V of Spin(9) corresponds to the massless representation of the Poincaré group induced from the representation $(S_0^2 \oplus \Lambda^3 \oplus R) \otimes V$ of Spin(9).

Problem 6.3 Consider the **M-superalgebra** introduced in the lecture:

$$[Q_a,Q_b] = \gamma^{\mu}_{ab} P_{\mu} + \tfrac{1}{2} \gamma^{\mu\nu}_{ab} Z_{\mu\nu} + \tfrac{1}{5!} \gamma^{\mu_1 \cdots \mu_5}_{ab} Z_{\mu_1 \cdots \mu_5} \; ,$$

ST 2007 (jmf) Tutorial Sheet 6

where Q_a transforms in the spinor representation Δ of Spin(1,10). The right-hand side is simply the decomposition of $S^2\Delta=\Lambda^1\oplus\Lambda^2\oplus\Lambda^5$ in terms of irreducible representations of Spin(1,10). Under Spin(1,9), Δ decomposes as $\Delta=\Delta_+\oplus\Delta_-$, where Δ_\pm are the chiral spinor representations of Spin(1,9). Let Q_α^\pm denote the corresponding generators. Write the Lie brackets $[Q_\alpha^\pm,Q_\beta^\pm]$ and $[Q_\alpha^+,Q_\beta^-]$ in terms of irreducible representations of Spin(1,9). The resulting superalgebra is the **IIA superalgebra**. Find examples of representations of this superalgebra corresponding to the following IIA branes: fundamental string, NS5, D0, D2 and D4, by identifying which charges $(P_\mu, Z_{\mu\nu}, Z_{\mu_1\cdots\mu_5})$ must be turned on in the superalgebra, and writing down the corresponding spinor conditions.

Problem 6.4 Consider the IIB superalgebra

$$\begin{split} [Q_{\alpha}^I,Q_{\beta}^J] &= \gamma_{\alpha\beta}^{\mu} \left(\delta^{IJ} P_{\mu} + \sigma_1^{IJ} Z_{\mu} + \sigma_3^{IJ} \widetilde{Z}_{\mu} \right) + \tfrac{1}{3!} \gamma_{\alpha\beta}^{\mu\nu\rho} \varepsilon^{IJ} Z_{\mu\nu\rho} \\ &\quad + \tfrac{1}{5!} \gamma_{\alpha\beta}^{\mu_1\cdots\mu_5} \left(\delta^{IJ} Z_{\mu_1\cdots\mu_5}^+ + \sigma_1^{IJ} W_{\mu_1\cdots\mu_5}^+ + \sigma_3^{IJ} \widetilde{W}_{\mu_1\cdots\mu_5}^+ \right) \,, \end{split}$$

where I, J = 1,2 and $\mathfrak{g}_1 = 2\Delta_+$ consists of two copies of the positive-chirality spinor representation of Spin(1,9). Find examples of representations of this superalgebra corresponding to the following IIB branes: fundamental string, NS5, D(-1), D1 and D3, D5 and D7 by identifying which charges must be turned on in the superalgebra, and writing down the corresponding spinor conditions.

References

- [1] K. Kamimura and M. Sakaguchi, "osp(1|32) and extensions of super-A $dS_5 \times S^5$ algebra," *Nucl. Phys.* **B662** (2003) 491–510, hep-th/0301083.
- [2] P. K. Townsend, "M-theory from its superalgebra," hep-th/9712004.