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Chapter One

INTRODUCTION AND MOTIVATION

1.1. A BRIEF HISTORY OF THE KDV EQUATION

The KdV equation is the quintessential integrable system. In the twenty-
seven years since computer experimentation began to reveal traces of its inte-

grability, the KdV equation has served as an abundant source of results and
inspiration to physicists and mathematicians in fields once as far apart as high

energy physics and algebraic geometry. In its richness of structure it is compa-
rable only to string theory, to which it is happily related. It is this very relation

that motivates the present work; but the story of the KdV equation itself takes
us back a while earlier...

the first soliton

1834 was a remarkable year, for it represents the inception of solitons into
recorded science. And the event could not have been more fortuitous:

‘ I was observing the motion of a boat which was rapidly drawn

along a narrow channel by a pair of horses, when the boat sud-
denly stopped—not so the mass of water in the channel which it

had put in motion; it accumulated round the prow of the vessel

in a state of violent agitation, then suddenly leaving it behind,
rolled forward with great velocity, assuming the form of a large

solitary elevation, a rounded smooth and well-defined heap of
water, which continued its course along the channel apparently

without change of form or diminution of speed. I followed it on
horseback, and overtook it still rolling on at a rate of some eight

or nine miles an hour, preserving its original figure some thirty
feet long and a foot to a foot and a half in height. Its height

gradually diminished, and a after a chase of one or two miles
I lost in in the windings of the channel. Such in the month of

August 1834, was my first chance interview with that singular
and beautiful phenomenon...’
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Thus wrote John Scott-Russell ten years later in his report to the British As-

sociation for the Advancement of Science [1]. It would not be his last ‘interview’
with what are now termed solitons, for legend has it that managed managed

to consistently reproduce this phenomenon in the Union canal, by having two
horses drag a large wooden barge and then suddenly stopping.

the kdv equation

Scott-Russell’s excitement about his ‘Wave of Translation’ was not shared at
first by his contemporaries. In fact his discovery was treated with scepticism—if

not outright hostility—by Airy and by Stokes, who in 1849 published a ‘proof’

that such a wave could not exist (he later retracted). It was not until the 1870s
that Scott-Russell’s work became to be accepted by prominent scientists like

Boussinesq and Rayleigh, both of whom knew—at least qualitatively—what we
now know as the one-soliton solution to the KdV equation. The KdV equation

itself appeared in 1895 in a paper by Korteweg and de Vries [2] who, appar-
ently unaware of the work of Boussinesq and Rayleigh, offered their equation

as a rebuttal to the early criticisms of Airy and Stokes. Korteweg and de Vries
introduced the equation that now bears their name in order to model solitonic

behavior mathematically. Their equation reads

u̇ = 6uu′ + u′′′ , (1.1.1)

where u = u(x, t) is a real valued function with faster than polynomial decay at
spatial infinity x → ±∞ and where ′ and ˙ denote derivatives with respect to

x and t respectively. Physically u is the height of a water wave in a long and
shallow canal. As it was intended from the start, the KdV equation does indeed

possess solitonic solutions. Indeed, if we make the Ansatz u(x, t) = w(x + c2t),
then we find that w(x) = 1

2c
2 sech2(12cx) which gives us a pictorial idea of what

Scott-Russell saw in the channel (see Fig. 1.1). The above solution is called the
one-soliton solution. Notice that as the wave evolves in time its form does not

change. Moreover the time evolution of the ‘peak’ of the soliton is linear with a
speed proportional to the height. The effective dynamics of one KdV soliton are

therefore (trivially) completely integrable.

early evidence for integrability

An analogous solution exists for two solitons. This is not a trivial fact, be-
cause the nonlinearity of the KdV equation destroys the superposition principle;

but one can argue as follows. Since solitons decay fast at infinity and the bigger
the soliton the faster it moves, it makes sense to consider an initial configuration

(say, at large negative time) of two solitons of different sizes—the larger one to
the right of the smaller one—and sufficiently spatially separated, that we may
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Figure 1.1 The time evolution of a KdV soliton

consider them as non-interacting. As we start the clock, the two solitons start

to move independently: the fast one striving to overtake the slow one. As the
solitons get closer, the behavior of the solution becomes complicated due to the

nonlinearity; but the astonishing fact which emerged from computer simulations

in the 1960s [3], is that if one waits long enough, the original solitons reappear
with their original shapes and speeds (see Fig. 1.2). Apart from the complicated

interacting behavior when the solitons meet, the only other remnant of the non-
linearity is the following. If the evolution had been linear, then for large positive

t, the positions of the solitons would be the same as if there had been no interac-
tion; but in the nonlinear case, the positions of the solitons are actually shifted:

the larger soliton having gained some ground and the smaller soliton having lost
some. In fact a closer look at Fig. 1.2 reveals that as the solitons merge, the

larger one decreases in size and the smaller one increases in size in such a way
that the interaction looks like a classical scattering process in which the solitons

have exchanged their momentum.

It is clear that the initial configurations of the two-soliton solution are pa-
rametrized by four numbers: the positions and the heights of the two solitons

at a fixed large negative time. In fact, the effective dynamics of the two-soliton
solution are governed by a completely integrable system in a four-dimensional

phase space. The same is true for arbitrary N : there exist N -soliton solutions
to the KdV equation which are effectively described by a completely integrable
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Figure 1.2 A 2-soliton solution of the KdV equation

system in a 2N -dimensional phase space.

the miura transformation

Urged on by the existing numerical results, a number of people (Gardner,
Kruskal and Miura among others) started the systematic investigation of the

KdV equation as a potentially integrable system. It is clear that H1 =
∫
u

is conserved, since the right-hand side of the KdV equation (1.1.1) is a total

derivative. Similarly, multiplying (1.1.1) by u, one can conclude that H2 =
∫
u2

is also conserved. By the summer of 1967 there were three more charges known,

all of which sharing the property that Hn =
∫
pn(u) where pn(u) = un + · · · is

a polynomial in u and its spatial derivatives. That same summer, Robert Miura

(then a graduate student) was sent out to find more conserved quantities for the
KdV equation. Miura found a few more charges by hand before he discovered a

remarkable transformation [4] relating solutions of the KdV equation to solutions
of another nonlinear differential equation

v̇ = −6v2v′ + v′′′ , (1.1.2)

nowadays known as the modified KdV equation (mKdV). If v(x, t) is a solution
of the mKdV equation, then

u = −v2 − v′ (1.1.3)

is a solution of the KdV equation. This transformation was subsequently general-
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ized by Gardner, exploiting the formal Galilean invariance of the KdV equation1,

to derive an infinite number of polynomial conserved charges [5] [6].

In that same series of papers, a remarkable observation was made that was to

have profound implications in the field. If we understand the Miura transforma-
tion (1.1.3) as a Riccati equation for v and we linearize it by defining v = ψ′/ψ,

then u = −ψ′′/ψ. Performing a Galilean transformation with c = 6λ (see previ-
ous footnote) on u, we find that ψ obeys the one-dimensional time-independent

Schrödinger equation with potential −u:

ψ′′ + uψ = λψ . (1.1.4)

If we now let u evolve in time according to the KdV equation, then it makes sense

to ask how λ and ψ evolve. Remarkably, it turns out that λ remains constant!
In other words, the KdV flow (1.1.1) is an isospectral deformation of the

Sturm-Liouville operator ∂2 + u, where ∂ = ∂/∂x.

This observation gave rise to the inverse scattering method, by which N -

soliton solutions of the KdV equation were found from scattering data [7]. It
turns out that the scattering data associated to the potential has a very simple

time evolution. To solve the KdV equation with boundary conditions u(x) one
simply solves the scattering problem for the potential −u(x), one then evolves the

scattering data, and finally one applies the inverse method to determine the new

potential. Using the inverse scattering method, Zakharov and Faddeev [8] were
the first to demonstrate that the KdV equation was completely integrable in the

sense that it possesses action-angle variable, namely the scattering data. The
inverse scattering method and its quantum counterpart has been the primary

source of the modern theory of quantum groups (see, for example, [9]).

the kdv equation as a hamiltonian system

Parallel to these developments the hamiltonian side of the story was starting

to unfold. In [10], Gardner proved that the KdV equation could be written in

hamiltonian form relative to one of the polynomial conserved charges that had
been known for some time. In fact, relative to the following Poisson bracket in

the space of initial configurations u(x):

{u(x) , u(y)}1 = δ′(x− y) , (1.1.5)

and taking the conserved charge H3 =
∫
u3 − 1

2(u
′)2 as hamiltonian, the KdV

1 One can see that the transformations u 7→ u − 1

6
c, x 7→ x + ct, t 7→ t leave the KdV

equation (1.1.1) invariant. We call this a formal invariance, however, since it does not
preserve the boundary conditions at x → ±∞.
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equation can be written in hamiltonian form:

u̇ = {u , H3} =

(
δH3

δu

)′

. (1.1.6)

Furthermore, relative to the Gardner bracket (1.1.5) all the polynomial conserved
charges Hn are in involution {Hi , Hj} = 0. This fact established the (formal)

integrability of the KdV equation.

There is more, however. In [11] Magri discovered that the KdV equation
could be written in hamiltonian form relative to a second bracket and relative to

a second hamiltonian. In this case the bracket is given by

{u(x) , u(y)}2 = (12∂
3 + 2u∂ + u′) · δ(x− y) , (1.1.7)

and the hamiltonian is simply H2 =
∫
u2. Magri noticed that in addition to

having a flow in common, both Poisson brackets are coordinated: that is, that

any linear combination α {− , −}1+ β {− , −}2 is again a Poisson bracket. This
condition is of course nontrivial, since the Jacobi identities are quadratic. This

bihamiltonian structure for the KdV equation implies a series of relations between
the conserved charges. In fact, for all n ≥ 1, one has the following relation:

∂ ·
δHn+1

δu
= (12∂

3 + 2u∂ + u′) ·
δHn

δu
, (1.1.8)

which for n = 2 is precisely the fact that both sides of the equation equal the KdV

equation. These relations, originally due to Lenard, can be used to recursively
compute the conserved quantities starting from the trivial one H1 =

∫
u.

It is interesting to notice that the Magri bracket is nothing but a representa-

tion of the (symmetric algebra of the) Virasoro algebra, as can be trivially seen
by assuming that the field u(x) lives on the circle and writing the induced Poisson

brackets on the modes. In fact, this simple realization lies at the heart of much
of the present research in this topic; especially in its relation with conformal field

theory and string theory.

the hirota equation

In 1972, Hirota introduced a remarkable trick to obtain soliton solutions to

the KdV equation. This method has since shown itself very deep, but the idea
is simple enough [12]. One introduces a potential τ related to u as follows

u(x) = 2
∂2

∂x2
log τ(x) . (1.1.9)
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In terms of τ the KdV equation (1.1.1) becomes quadratic:

τ ′τ̇ − τ τ̇ ′ + ττ (4) − 4τ ′τ ′′′ + (τ ′′)2 = 0 . (1.1.10)

This is known as the KdV equation in Hirota bilinear form and τ is known as the

‘tau’-function. This equation may seem more complicated, but it has the nice
property that it almost linearizes the KdV equation. Notice that τ(x) = 1 is

trivially a solution: it corresponds to u(x) = 0. Suppose that we now alter this
solution by adding the exponential of an affine linear term: τ = 1 + exp φ(x, t)

with φ(x, t) = kx+ωt+ θ. Then we find that τ obeys Hirota’s equation (1.1.10)
provided that ω = k3. Plugging this solution back into (1.1.9) we find that it is

precisely the one-soliton solution. We can try to obtain a 2-soliton solution by

adding another term τ = 1+ expφ1 + expφ2, with φi(x, t) = kix+ k3i t+ θi. We
find that this is not a solution: the terms in exp 2φi cancel but not the mixed

terms exp(φ1+ φ2). We can try to cancel this term by adding yet an extra term
to τ of the form exp(φ1+φ2+Θ12), for some constant Θ12. Remarkably the new

tau function

τ(x, t) = 1 + eφ1 + eφ2 + eφ1+φ2+Θ12 (1.1.11)

is an exact solution of (1.1.10) provided that

expΘ12 =

(
k1 − k2
k1 + k2

)2

. (1.1.12)

This goes on and one can obtain all N -soliton solutions in this fashion. The
approach of Hirota not only facilitates the description of the soliton solutions,

but it also makes contact—after the work of the Kyoto school—with the theory
of infinite-dimensional Lie algebras. We shall comment briefly about this later

on.

1.2. THE LAX FORMALISM

lax’s observation

The fact that the eigenvalues of the Sturm-Liouville operator L = ∂2 + u
remain constant provided u evolves according to the KdV equation, was explained

conceptually by Peter Lax [13] by showing that the KdV equation itself could
be written in a manifestly isospectral form. If we take P = 4∂3+6u∂+3u′, then
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we can write the KdV equation in the form:

L̇ = u̇ = [P, L] . (1.2.1)

This equation is remarkable in many ways. First of all, it displays the isospectral

nature manifestly: P is a skew-hermitian operator and equation (1.2.1) can be
understood as the infinitesimal version of a unitary evolution

L(t) = U(t)−1L(0)U(t) (1.2.2)

with P = −U̇(0). But more importantly, it constitutes the ideal point from which

to generalize. First of all, one can find other operators P for which (1.2.1) makes
sense. It is clear that not every operator P will be consistent with (1.2.1), because

P must be such that its commutator with L is a zeroth order differential operator.
This is a highly restrictive fact; but nevertheless, one can find an infinite number

of such operators—a fact that is intimately linked with the complete integrability

of the KdV equation. Similarly, one can generalize this problem by considering
other Lax operators L. In fact, one can define in this way a vast number of

integrable hierarchies as isospectral deformations of a given Lax operator. For L
a differential operator of the form L = ∂n+ · · ·, the resulting hierarchy is known

as the generalized nth order KdV hierarchy or simply n-KdV. We will have ample
opportunity to discuss these hierarchies in Chapter Three; but let us just mention

now the following beautiful and deep fact. The Miura transformation (1.1.3) can
be understood in terms of the Lax operator L as simply a formal factorization:

L = ∂2 + u = (∂ + v)(∂ − v). This result, which appeared for the first time in
[14], has now been generalized in a variety of ways—see, for example, [15], [16],

[17], [18].

the adler–gel’fand–dickey scheme

All the information concerning the spectrum of an operator is contained in

its resolvent. For λ not in the spectrum of the Lax operator L = ∂2+u, we define
the resolvent by R(λ) = (L−λ)−1. Gel’fand and Dickey, in a remarkable series of

papers [19] [20] [21] demonstrated that the polynomial conserved charges of the
KdV equation could be recovered from the asymptotic expansion (as λ→ ∞) of

the resolvent R(λ); and, in doing so, introduced the extremely useful concept of
the fractional powers of L. They furthermore generalized the Gardner bracket

(1.1.5) to other KdV-type equations. This generalization now bears their name:
the first Gel’fand–Dickey bracket. Perhaps the only shortcoming of the approach

of Gel’fand and Dickey is that they treated L as an honest operator and as a
result their work was full of the unavoidable analytic subtleties. It was Adler

[22] who first noticed that their results could also be obtained in a completely
algebraic fashion if one considered L to be a formal differential operator instead.
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Adler introduced the formal inverse ∂−1 of the derivative operator ∂, which

obeys

∂−1f = f∂−1 − f ′∂−2 + f ′′∂−3 − · · · (1.2.3)

for consistence with the Leibniz rule ∂f = f∂+ f ′. One is then forced to extend
the ring of differential operators to objects containing negative powers of ∂. In

this ring of (formal) pseudodifferential operators, one can take the square
root of L; that is, there exists a unique operator

L1/2 = ∂ + v1 + v2∂
−1 + v3∂

−2 + · · · (1.2.4)

satisfying L1/2L1/2 = L and such that the vi are polynomials in u and its deriva-
tives. Furthermore Adler introduced a trace on the ring of formal pseudodif-

ferential operators as follows. If P =
∑
pi∂

i, then TrP =
∫
p−1, which as the

notation suggests, annihilates commutators. In terms of the Adler trace, one can

write down all the conserved charges of the KdV equation simply as traces of
fractional powers of the Lax operator

Hi = TrLi−1/2 , (1.2.5)

which are manifestly conserved since the evolution of L and of any fractional

power is given by a commutator (1.2.1). Moreover the possible operators P

in (1.2.1) defining isospectral deformations of L, can be written in terms of the
fractional powers; in particular the KdV equation is given (up to trivial rescalings

of u, x and t) by

L̇ = [L
3/2
+ , L] , (1.2.6)

where the subscript + denotes the differential part of a pseudodifferential opera-
tor. The Adler trace would be later extended by Wodzicki to pseudodifferential

operators in arbitrary manifolds—a result of deep importance in many aspects
of noncommutative geometry.

Two other important results were also contained in [22] concerning the

hamiltonian structures of the KdV-type equations. On the one hand, the first
Gel’fand–Dickey bracket was recognized as the Kirillov-Kostant bracket in a

coadjoint orbit of the formal group of pseudodifferential operators of the form
1 +

∑
i ai∂

−i—the Volterra group. This fact was independently observed by

Lebedev and Manin [23], and puts the first Gel’fand–Dickey bracket on a solid
conceptual framework. But perhaps more importantly, Adler conjectured a gen-

eralization of the Magri bracket (1.1.7), which has had a wide area of applicability
outside the confines of the KdV-type equations. The Adler map was proven to

be hamiltonian by Gel’fand and Dickey in [24] and the resulting Poisson bracket
is known as the second Gel’fand–Dickey bracket. It lies at the heart of many
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results in W-algebras and conformal field theory. Most of the work in this the-

sis is framed in one way or another in the formalism developed by Adler and
Gel’fand–Dickey. We will therefore spend considerable time developing it in

Chapters Three and Four.

1.3. SOME IMPORTANT GENERALIZATIONS

the kp hierarchy

It follows from the Lax representation for the KdV equation that one can
study the dynamical system defined by the isospectral deformations of more

general differential operators. One of the virtues of the Adler–Gel’fand–Dickey
scheme is that all these systems can be treated in parallel. The pivotal role

played by the fractional powers of the Lax operator L = ∂n+ · · ·, and by its nth

power L1/n = ∂+ · · · in particular, suggests the existence of a universal hierarchy
containing all the other generalized KdV hierarchies. The idea is the following:

the space of differential operators of the form L = ∂n + · · · is in one-to-one
correspondence with the space of pseudodifferential operators Λ = ∂+

∑
iwi∂

−i

whose nth power is differential. Since the spaces are isomorphic, they must have
the same number of degrees of freedom and indeed the condition on Λ singles out

the first n wi as independent. Clearly, the limit n→ ∞, which is not well-defined
for L, makes perfect sense for Λ and corresponds to the general pseudodifferential

operator with all wi independent. The hierarchy of isospectral deformations of
such an operator was introduced by the Kyoto school in the early 1980s [25]

and is named the KP hierarchy after its first nontrivial equation—the equation
introduced in the early 1970s by Kadomtsev and Petviashvili [26] as the simplest

integrable extension of the KdV equation to 2 + 1 dimensions.

The method of Hirota to solve the KdV equation can be extended to the KP

hierarchy. It is here that the true depth of the idea reveals itself. We summarize
the main result. The τ -functions for the KP hierarchy are the points in an

infinite-dimensional Grassmannian which has a very natural description in terms
of two-dimensional quantum field theory. If one considers a complex fermion

in two-dimensions, there is a canonical way to associate a τ -function to the
orbit through the vacuum of the infinite-dimensional group GL(∞) of invertible

matrices. This group has a natural representation in terms of exponentials of
fermion bilinears. Now bosonization will map the fermionic theory to a theory

in one free boson in a way that commutes with the action of GL(∞). Thus we
have a one-to-one correspondence between the τ -functions of the KP hierarchy

and the orbit of the vacuum in a bosonic Fock space. This correspondence can
be made explicit as follows. The bosonic Fock space can be modeled as the space
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of polynomials in variables t1, t2, . . . corresponding to the creation modes of the

boson—the vacuum being sent to the constant polynomial 1. To obtain other
elements in the orbit of the vacuum we must simply bosonize exponentials of

fermionic bilinears: but these are simply the vertex operators. Therefore we can
obtain solitonic solutions of KP by acting with vertex operators on the bosonic

vacuum. This accounts for the form of the two-soliton solution (1.1.11). The
Hirota bilinear form now becomes the infinite-dimensional analog of the Plücker

embedding of a Grassmannian in complex projective space. This circle of ideas
is still very much under investigation and one can find a thorough discussion in

[27].

Finally let us mention that the KP hierarchy shares many of the properties
of the KdV-type hierarchies: integrability, bihamiltonian structure,... and lies

at the heart of the study of (infinitely-generated) W-algebras of the W∞-type,
whose role in string theory, quantum gravity, and even condensed matter physics

is beginning to unfold.

a supersymmetric kdv equation

One of the most remarkable symmetry principles to have appeared in re-

cent times is that of supersymmetry: originally, the symmetry between bosons

and fermions. For us it would be therefore interesting to see whether the KdV-
type hierarchies admit supersymmetric extensions. A first step in this direc-

tion was taken by Kupershmidt [28] when he proposed a fermionic extension
of the KdV equation. Nevertheless his equation—its bihamiltonian integrabil-

ity notwithstanding—was not actually invariant under any supersymmetry. The
first supersymmetric extension of the KdV hierarchy appeared in the seminal

paper of Manin and Radul [29] on the supersymmetric KP hierarchy. This is
a nonlinear partial differential equation for variables u(x, t) and ξ(x, t), where

u(x, t) (respectively ξ(x, t)) is a function taking values in the even (respectively
odd) sector of an a priori infinitely-generated Grassmann algebra. The super-

symmetric KdV (sKdV) equation of Manin and Radul now reads:

u̇ = 6uu′ + u′′′ − 3ξξ′′

ξ̇ = 3ξu′ + 3ξ′u+ ξ′′′ ;
(1.3.1)

which reduces to the KdV equation upon putting ξ = 0. The sKdV equation is
invariant under the following supersymmetry:

δξ = u and δu = ξ′ , (1.3.2)

which squares to an infinitesimal translation δ2 = ∂.
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We can write the sKdV equation in a manifestly supersymmetric fashion by

going over to superspace. Superspace is the natural arena for supersymmetry:
it realizes supersymmetry geometrically in much the same way that Minkowski

spacetime realizes Poincaré transformations. The relevant superspace in this
case is (1|1)-dimensional with coordinates (x, θ): θ being the ‘fermionic’ part-

ner of x. Because θ2 = 0 we can expand functions in superspace—traditionally
known as superfields—as follows: U(x, θ) = ξ(x)+θu(x). Supersymmetry trans-

formations are generated by the fermionic derivative Q = ∂θ − θ∂, so that
δU = δξ − θδu = QU . There is another fermionic derivative D = ∂θ + θ∂

which is supersymmetrically covariant—that is, anticommutes with the genera-
tor Q of supersymmetry—and is hence called the supercovariant derivative. If

we adopt the convention that on a superfield U(x, θ), U ′ = DU and U [i] = DiU ,
then the sKdV equation (1.3.1) can be rewritten as follows

U̇ = 3(UU ′)′′ + U [6] . (1.3.3)

This equation is manifestly supersymmetric precisely because D is covariant,

whence if U transforms like a superfield, then so does U ′.

The sKdV equation was shown by Mathieu [30] to be hamiltonian relative

to a supersymmetric analog to the Magri bracket (1.1.7), which incidentally
reproduces the N = 1 superVirasoro algebra on the modes. Its bihamiltonian

structure was found by Oevel and Popowicz [31] and independently by Figueroa-
O’Farrill, Mas, and Ramos [32], who proved that the sKdV analog of the Gardner

bracket (1.1.5) is actually nonlocal. This is one of the many idiosyncrasies of
supersymmetric integrable systems. Another idiosyncrasy is that contrary to the

nonsupersymetric case, there is no natural supersymmetric KP hierarchy which is
universal in the sense that the KP hierarchy is. There are many supersymmetric

extensions of the KP hierarchy: the SKP hierarchy of Manin–Radul [29], the

Jacobian SKP hierarchy [33] [34], and the even order SKP hierarchy or SKP2

[32], among others. They are defined in Chapter Four and their study shall be

a major theme of this thesis.

1.4. INTEGRABLE HIERARCHIES IN STRING THEORY

One hundred and fifty years after the discovery of the soliton, a different
kind of wave would roll in to the shores of theoretical physics. In 1984, Green

and Schwarz [35] discovered the now famous cancellation of anomalies in type II
superstrings. It would take just five more years until both waves would come into

contact. Indeed, the latest incarnation of the KdV equation is in string theory.
This unexpected relation was brought about by the discovery that many of the
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Figure 1.3 A ‘quadrangulated’ surface and its dual graph

properties of certain kinds of string theories are governed by the equations of the

KdV-like hierarchies.

A major problem in the standard perturbative approach to string theory (see
[36] for a review) is that the topological expansion does not converge. Indeed, it

was proven in [37] that the genus expansion for the bosonic string partition func-
tion Z behaves as Z ∼

∑
h(2h)!, whence it is not even Borel summable. Matrix

models were proposed to overcome this problem. The basic idea is the following.
One first discretizes the worldsheet and substitutes the topological expansion

and the integral over the metrics g by a sum over all possible triangulations:

∑

genera

∫
Dg →

∑

triangulations

. (1.4.1)

Each triangulation has a dual graph (see Fig. 1.3), whence the sum over trian-
gulations can be substituted by a sum over the dual graphs. Remarkably the

sum over graphs can be modeled by a finite-dimensional integral over the space
of hermitian matrices. What makes this approach feasible is the discovery that

this integral (or rather its free energy) can be computed recursively and that
in the continuum limit the recursion relations are identical to those which the

bihamiltonian structure imposes on the conserved charges of the KdV hierarchy.
More precisely, the partition function of the hermitian one-matrix model

agrees in the continuum limit with a τ -function of the KdV hierarchy satisfying
an extra property known as the string equation. The string equation can be

interpreted to say that the τ -function is invariant under one of the additional
symmetries of the KP hierarchy. These conditions translate into an infinite
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set of constraints on the partition function, enabling one to solve the theory

completely—or at least up to a finite number of normalization constants. This
remarkable correspondence persists between the hermitian N -matrix model and

the (N + 1)-KdV hierarchy. This makes the study of additional symmetries of
integrable hierarchies an important problem. We will devote Chapter Five to

this theme.
Despite their success, matrix models pose two major theoretical challenges

which have remained unmet. On the one hand, they seem to describe strings
propagating in less than 1 dimension (the so-called c=1 barrier); and on the other

hand, their extension to superstrings remains elusive despite many attempts
to extend them. Nevertheless some progress has been made and at least one

supersymmetric hierarchy has already made its appearance. Part of the work
of this thesis is based in the identification of this hierarchy and in proving its

integrability. This is done in Chapter Seven.



Chapter Two

HAMILTONIAN DYNAMICS AND INTEGRABILITY

The nature of the infinite-dimensional systems on which we shall focus our

attention in this thesis is such, that they only afford some of the structure that
we have come to expect from finite-dimensional hamiltonian dynamics. The

remaining structure is nevertheless more than adequate to study these systems
and the purpose of the present chapter is to motivate the formalism in a simple

context. Departing from the familiar case of Hamilton’s equations in R2n, we
will arrive at an abstract definition of a hamiltonian dynamical system. To do

so we must look closely at what is essential and what is superfluous in the usual
formulation of hamiltonian dynamics. In the end, we will reach a formalism

that is perfectly suited to the infinite-dimensional dynamical systems that we
will study in the following chapters. Also in this chapter we briefly examine the

notion of an integrable hierarchy and discuss the basics of hamiltonian reduction.

2.1. DYNAMICAL SYSTEMS ON POISSON MANIFOLDS

The usual arena of hamiltonian dynamics is symplectic geometry. Whereas
this setting usually suffices, it is by no means necessary; and for the dynamical

systems that will be the focus of this thesis, it is in fact too strong a requirement
on our ‘phase space’. The point of this section is then to extract the essential

ingredients that make up a hamiltonian dynamical system.
Roughly speaking, there are two fundamental ingredients in the hamiltonian

formulation of dynamics: one kinematical and one dynamical. The kinematical

ingredient is the Poisson bracket, which allows us to associate a vector field with
any function; and the dynamical ingredient is a choice of function (the hamil-

tonian) which via the Poisson bracket defines the time evolution. Manifolds
admitting a Poisson bracket are called Poisson manifolds, and among them

symplectic manifolds play a privileged role: they correspond to those Poisson
manifolds with a nondegenerate Poisson bracket. The nature of the dynamical

systems we will be discussing will force us to deviate from the customary in two
important aspects. Firstly, we will abandon the symplectic category and set-

tle for ‘phase spaces’ which are just Poisson manifolds. But also, we will have
to trade our traditional geometric tools for others more algebraic which will be

better suited to the dynamics on the infinite-dimensional spaces we will be con-
sidering. Poisson geometry (even of infinite-dimensional manifolds) is relatively

15
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well-understood, but for our purposes it is actually much more convenient to

simply algebraize the relevant geometric notions. In doing so it may seem that
we are leaving the ‘substantial’ and going into the formal; but this not the case

at all. Indeed, the formalism is sufficiently general to allow one to specialize
many of the results to the particular concrete situation.

Let us start with the familiar. Let us take as our phase space M = R2n

with coordinates (qi, pi). Suppose we are given a function H on M . Call it

the hamiltonian. We can define a dynamical system starting from this data by
imposing that the time evolution be governed by Hamilton’s equations:

q̇i =
∂H

∂pi
ṗi = −

∂H

∂qi
. (2.1.1)

Introducing the Poisson bracket of any two functions f and g:

{f , g} =
∑

i

(
∂f

∂qi
∂g

∂pi
−
∂f

∂pi

∂g

∂qi

)
, (2.1.2)

we can write Hamilton’s equations simply as

ḟ = {f , H} , (2.1.3)

for any function f and, in particular, for the coordinates (qi, pi). The Poisson

bracket satisfies the following two properties. It is antisymmetric: {f , g} =
−{g , f}; and it obeys the Jacobi identity: {f , {g , h}} = {{f , g} , h} +

{g , {f , h}}. Antisymmetry is obvious from (2.1.2), whereas the Jacobi iden-
tity follows after a simple computation. Therefore the Poisson bracket defines

the structure of a Lie algebra on the functions of M . More is true, however.
Functions form a ring, and the Poisson bracket associates with every function on

M a derivation; that is, if f , g, and h are functions on M , then

{f , gh} = g {f , h}+ {f , g}h . (2.1.4)

These facts make the functions on M into a Poisson algebra. The derivation
property allows one to give a more conceptual proof of the Jacobi identity. Simply

notice that on the linear functions the Jacobi identity is obvious since the Poisson
bracket of any pair of linear functions is a constant. Then one simply uses (2.1.4)

to propagate the Jacobi identity to arbitrary functions.
Suppose that we now change coordinates to xi(q, p). The fundamental Pois-

son bracket of these coordinates is given by

℧
ij(x) ≡

{
xi , xj

}
=
∑

k

(
∂xi

∂qk
∂xj

∂pk
−
∂xi

∂pk

∂xj

∂qk

)
. (2.1.5)
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It is easy to check that ℧ij transforms tensorially under a change of coordinates

xi → yi(x) and thus defines an antisymmetric bivector—that is, a rank 2 anti-

symmetric covariant tensor: ℧ = 1
2℧

ij∂i ∧ ∂j . Furthermore, one can easily check
that ℧ij is nondegenerate so that its inverse Ωij exists and defines a nondegen-

erate 2-form Ω = 1
2Ωijdx

i ∧ dxj on M , called the symplectic form. The Jacobi
identities of the Poisson bracket become a differential relation on ℧ which, when

inverted, implies that the symplectic form is closed: dΩ = 0. The differential
relation on the bivector ℧ can be written very simply in terms of the Nijenhuis

bracket, in terms of which dΩ = 0 is equivalent to [℧,℧] = 0.

To summarize, starting with the usual coordinates (qi, pi) and the usual

Poisson brackets, we have uncovered an underlying geometric structure: the
bivector ℧ obeying [℧,℧] = 0. This may seem overkill for R2n but it allows us to

do hamiltonian mechanics covariantly on any Poisson manifold M . A theorem
going back to Lie and generalized recently by Weinstein [38] says that around

each point of a Poisson manifold, once can find local coordinates (qi, pi, c
α) such

that ℧ has the following form:




qj pj cβ

qi 0 −δij 0

pi δji 0 0

cα 0 0 0


 . (2.1.6)

The cα are called casimir functions and have vanishing Poisson brackets with

everything. Clearly, if no casimirs exist, ℧ is nondegenerate, and we are in the
symplectic case—the coordinates (qi, pi) being in this case the familiar canonical

coordinates. The symplectic instance of the Lie-Weinstein theorem is known as
Darboux’s theorem. It says that symplectic manifolds of the same dimension are

locally isomorphic. Comparing with riemannian geometry, it basically comes to
say that there is no symplectic curvature. The Lie-Weinstein theorem charac-

terizes the local geometry of a Poisson manifold: locally a Poisson manifold is
foliated by symplectic submanifolds; each symplectic leaf being specified uniquely

by the values that the casimirs take on it. Because the casimirs have vanishing
Poisson bracket with any function, they are constants of the motion relative to

any hamiltonian and therefore the time evolution preserves each symplectic leaf.
It may therefore seem that nothing is gained by considering dynamics on Pois-

son manifolds which are not symplectic. But there is a catch: global problems

aside, the transformation necessary to bring the coordinates of a given Poisson
manifold to the form (qi, pi, c

α) may be very cumbersome. This will be especially

true in the integrable hierarchies with which we will be working.

There is another way to understand the Poisson structure ℧ that will better
suit our needs. The derivation property (2.1.4) says that the to every function
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f there corresponds a vector field Xf

Xf · g = {f , g} , (2.1.7)

whose components in local coordinates are given by X i
f = −℧ij∂jf . Xf is called

the hamiltonian vector field associated with f . In other words, ℧ gives rise

to a tensorial map J : {1-forms} → {vector fields} defined by Xf = −J(df).
This is enough to specify J completely since every one-form is locally a linear

combination of one-forms of the form gdf . In the non-symplectic case, this map

will fail to be an isomorphism, but nevertheless its image will be a subalgebra
of the vector fields. This important fact follows from the Jacobi identity of the

Poisson bracket and the fact that one can always construct a local basis for the
1-forms out of gradients of functions. Therefore it is enough to show that for

any two functions f and g,

[
Xf , Xg

]
= X{f , g} . (2.1.8)

But this follows trivially from the Jacobi identity. Indeed, acting on any function
h,

[
Xf , Xg

]
· h = Xf ·Xg · h−Xg ·Xf · h

= {f , {g , h}} − {g , {f , h}} (by (2.1.7))

= {{f , g} , h} (Jacobi identity)

= X{f , g} · h .

The fact that the image of J is a Lie subalgebra of the vector fields allows
us to define a 2-form there as follows. If α and β are 1-forms on M , then

ω(J(α), J(β)) = 〈J(α), β〉 , (2.1.9)

where 〈−,−〉 is the dual pairing between vector fields and 1-forms. Applied to

gradients df and dg, we find that ω(J(df), J(dg)) = ω(Xf , Xg) = {f , g}. One
can show that the Jacobi identity of the Poisson bracket implies that ω is closed;

that is, that for any three 1-forms α, β, and γ,

dω(J(α), J(β), J(γ)) = 0 . (2.1.10)

Apart from the degeneracy of the Poisson brackets, there is another aspect
in which the formalism we will be using deviates from the usual one. The class of

functions that we will be working with will turn out not to form a ring. In other
words, the product of two functions will fall outside the class of functions we
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consider. This may seem at first problematic, but it turns out not to hinder the

formalism at all. Let us then summarize the necessary ingredients in the formu-
lation of hamiltonian dynamics. We will at the same time translate the relevant

geometric data into algebraic terms. The following kinematical ingredients will
be needed:

(1) a Lie algebra X corresponding to the vector fields;

(2) a representation Ω0 of X corresponding to the functions;

(3) a vector space Ω1 nondegenerately paired with X via 〈−,−〉, and a linear
map d : Ω0 → Ω1 (we call Ω1 the one-forms and those one-forms in the

image of d gradients); and

(4) a linear map J : Ω1 → X satisfying the following properties (such a map will

be called hamiltonian):

(a) that the image of J be a Lie subalgebra of X;

(b) that J be skewsymmetric: for all one-forms α, β ∈ Ω1, 〈J(α), β〉 =

−〈J(β), α〉; and

(c) that the bracket {f , g} = 〈J(df), dg〉 of two functions f, g ∈ Ω0 satisfy
the Jacobi identity; or, in other words, that the map J ◦d : Ω0 → Ω1 → X

be a Lie algebra morphism.

On such a structure we will then be able to define dynamics by choosing a

function H ∈ Ω0 and defining the time evolution as the flow of the vector field
J(dH). Formally, we call the quintuple (X,Ω0,Ω1, J,H) satisfying the above

properties a hamiltonian dynamical system.

2.2. INTEGRABILITY AND DYNAMICAL HIERARCHIES

The dynamical systems that we will focus on are rather special in that they
are completely integrable. The notion of complete integrability goes back to

Jacobi and Liouville and has been substantially generalized in recent times. Let
us start with a trivial example: the ubiquitous harmonic oscillator. TakeM = R2

with coordinates (q, p) and the standard Poisson bracket {q , p} = 1. We take
as hamiltonian the function H = 1

2p
2 + 1

2q
2. The equations of motion are well

known: ṗ = −q and q̇ = p which have as solutions:

q(t) = q̄ cos t+ p̄ sin t and p(t) = p̄ cos t− q̄ sin t . (2.2.1)

The physical trajectories are circles centered at the origin and with radius R =√
q̄2 + p̄2. Antisymmetry of the Poisson bracket implies that the Hamiltonian is

conserved, and in fact we notice that on the trajectory at radius R, the hamilto-

nian obtains the value 1
2R

2. Let us introduce polar coordinates (which are valid
away from the origin) q = r cos θ and p = r sin θ. In terms of these coordinates
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the physical trajectories take a very simple form

r(t) = R and θ(t) = θ(0) + t , (2.2.2)

while the symplectic form becomes Ω = dp ∧ dq = rdr ∧ dθ = dH ∧ dθ. In other
words, the change of variables (q, p) 7→ (θ,H) is a canonical transformation which

linearizes the dynamics. These coordinates are called action-angle variables.
A hamiltonian dynamical system is called (completely) integrable if it admits

action-angle variables; that is, if we can find coordinates (Hi, θi) relative to which
the symplectic form becomes Ω =

∑
i dHi ∧ dθi and the time evolution is linear:

Hi(t) = Hi(0) and θi(t) = θi(0) + t.
This definition seems to suggest that integrability is an a posteriori conse-

quence of solving the dynamics; but in fact a theorem due originally to Liouville
gives us a necessary and sufficient condition for a hamiltonian dynamical sys-

tem to be completely integrable. Liouville’s theorem states the following. Let

(M,Ω) be a 2n-dimensional symplectic manifold and let us define some dynamics
on M by specifying a hamiltonian function H . Then the dynamical system is

completely integrable if and only if there exist n functions H = H1, H2, . . . , Hn

whose gradients dHi are linearly independent almost everywhere2 and such that

they are in involution {Hi , Hj} = 0; in particular, the Hi are all conserved
quantities.

Liouville’s theorem brings us naturally to the concept of an integrable hier-
archy. From a purely formal point of view—that is, disregarding for a moment

the physics we are describing—any one of the functions {Hi} can be used as
a hamiltonian and each of these hamiltonians defines an integrable dynamical

system with the same functions {Hi} as conserved quantities. Naturally, the
physics will choose one particular hamiltonian that can be sensibly interpreted

as generating the time evolution of the system, but from a structural point of
view, there is no reason to prefer one over any other. The democratic thing

to do is then to introduce n ‘times’ t1, . . . , tn and define a hierarchy of flows
∂f
∂ti

= {f , Hi} for any function f . The involutivity of the hamiltonians imply
that the flows commute:

∂2f

∂ti∂tj
−

∂2f

∂tj∂ti
= {{f , Hi} , Hj} − {{f , Hj} , Hi}

= {f , {Hi , Hj}} (Jacobi identity)

= 0 . (involutivity)

It is meaningful to describe integrable hierarchies in the Poisson setting. Sup-
pose that (P,℧) is a Poisson manifold of rank 2n, by which we mean that the

2 This is unavoidable: already in the harmonic oscillator, dH = 0 at the origin.
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generic symplectic leaf is of dimension 2n. By an integrable hierarchy we will un-

derstand a collection of n functions in involution H1, H2, . . . , Hn such that their
associated hamiltonian vector fields span an n-dimensional distribution (almost

everywhere). Since hamiltonian vector fields are tangent to the symplectic leaves,
this means that on a given symplectic leaf they give rise to an integrable hierarchy

in the sense of Liouville.

For infinite-dimensional dynamical systems the existence of action-angle vari-

ables is problematic (although for the KdV hierarchy they do exist and are given
in terms of scattering data [8]!) and one relaxes the notion of integrability by

requiring an infinite number of conserved quantities in involution or sometimes
even just an infinite number of commuting flows. This does not imply complete

integrability in the strict sense, but it is a convenient working definition in the

absence of a stronger yet still practical criterion.

A more rigorous notion of integrability for infinite-dimensional systems can

in principle be defined by analogy with the KdV hierarchy. It is proven in [13]
that every solution of the KdV hierarchy is ‘close’ (in some appropriate sense)

to an N -soliton solution, for some N . Moreover, as mentioned briefly in the first
chapter, any N -soliton solution of the KdV equation (indeed, hierarchy) can

be effectively described by a completely integrable system in a 2N -dimensional
phase space. Therefore the union of all these finite-dimensional phase spaces

is ’dense’ in the space of solutions of the KdV hierarchy. This means that the
phase space of the KdV hierarchy is the closure (in some appropriate topology)

of an inductive limit of phase spaces of finite-dimensional completely integrable

systems.

2.3. HAMILTONIAN REDUCTION

Finally we discuss in some detail the basic notions of hamiltonian reduction.

In fact, we will only need in what follows a very particular case: the reduc-
tion induced by constraints of the second-class. The modern formulation of the

theory of constraints goes back to Dirac [39]. A dynamical system on a phase
space M , may actually only depend—via a mixture of kinematical and dynam-

ical constraints—on some subspace. The way constraints arise normally is as
follows. One usually describes a physical theory by specifying the configuration

space and the action, which is a function on the tangent bundle. It may be,
however, that this description is redundant and in fact the true physical degrees

of freedom—that is, the physical configurations—comprise only a subspace of
the full configuration space. This is always the case in gauge theories, but this

phenomenon is not restricted to them. Dirac’s treatment of constraints is purely
hamiltonian. Given a Poisson manifold M and some functions {φi} on M with
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zero locus Mo = {m ∈ M |φi(m) = 0 ∀i}, Dirac distinguishes two kinds of con-

straints: first and second class. Constraints are said to be of the first class, if
their Poisson bracket is identically zero on Mo. At the other extreme we have

second-class constraints: for which the matrix {φi , φj} of Poisson brackets is
nondegenerate on Mo. Of course, constraints will generally come mixed and it

is something of an art to disentangle them. Fortunately, for our purposes we
will only need to talk about second-class constraints. Notice that from their

definition it follows that second-class constraints always come in pairs.
Dirac proved that if (M,Ω) is a Poisson manifold, then the zero locus Mo

of 2k second-class constraints {φi} inherits a symplectic structure from that
of M . Moreover he gave an explicit formula for the Poisson bracket on Mo

in terms of that on M . A Poisson structure on Mo is the same as a Poisson
algebra structure on its ring of functions Ω0(Mo). Any function on M restricts

to a function on Mo and quite trivially any two functions on M agree on Mo

if their difference vanishes there. On the other hand, and glossing over some

regularity issues3, every function on Mo extends to a function on M . In other

words, Ω0(M0) ∼= Ω0(M)/I, where I is the ideal of those functions vanishing
at Mo. Clearly the constraints belong to I and in the regular case alluded to

above, they generate it. That is, the typical element of I is a linear combination∑
i fiφi where fi are arbitrary functions on M . Notice, however that I is not

a Poisson ideal. That is, the Poisson bracket of two elements of I does not lie
back in I. In fact, far from it: {φi , φj} cannot all be zero on Mo, since the

matrix is nondegenerate. Therefore we cannot expect to compute brackets on
Mo simply by extending functions to M , computing their bracket there, and

restricting back to Mo. For this to be well-defined, the end result could not
depend on the extension, but in fact it does precisely because I is not a Poisson

ideal. The idea of Dirac was to deform the Poisson bracket on M in such a way
that the constraints would commute with everything (at least on Mo). Thus one

introduces the modified bracket

{f , g}D ≡ {f , g} −
∑

i,j

{f , φi}C
ij {φj , g} , (2.3.1)

where Cij is the matrix inverse of Cij ≡ {φi , φj}.
4 Notice that the Dirac bracket

obeys that for any function f , {f , φi} = 0 for all i. Therefore if we change f and

g by adding to them any arbitrary function which vanishes on Mo, their bracket

3 Technically, we assume that Mo is a regular embedded submanifold of M or equivalently
that 0 is a regular value of the function Φ : M → R2k whose components are the constraints
φi.

4 This bracket is really only defined on Mo since there is no guarantee that the matrix Cij

is invertible away from Mo; although in practice this subtlety seldom arises.
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on Mo is not altered. Therefore equation (2.3.1) induces a Poisson structure on

Mo, known as the Dirac bracket.

Now, in infinite dimensions we are sometimes forced to impose an infinite

number of second-class constraints. In those cases it is usually impracticable
to write the matrix {φi , φj} explicitly—let alone to compute its inverse; so we

must resort to other methods to perform the reduction. It is here that the un-

derstanding of the geometry underpinning Dirac’s theory of constraints becomes
essential.

We will see that the Dirac bracket corresponds to a particular choice of
extension of functions from Mo to M ; or more precisely, to a choice of writing

down gradients of functions onMo as one-forms onM . To understand this point

it we too must go back to basics.

The tangent vectors to Mo are naturally embedded in the tangent space to

M restricted to Mo. In other words, for every m ∈ Mo, TmMo ⊂ TmM in a
natural way. Indeed, since Mo is the zero locus of {φi}, X ∈ TM is tangent

to Mo if and only if X · φi = 0 for all i. But unlike tangent vectors, there is

no natural way to embed T ∗
mMo in T ∗

mM . This is because T ∗
mMo is defined as

the dual space of TmMo and the dual of a subspace is not naturally a subspace

of the dual. In other words, if U ⊂ V are vector spaces, then a choice of
U∗ ⊂ V ∗ corresponds exactly to a choice of complement to U in V ; that is,

if V = U ⊕ W then U∗ ∼= W o canonically, where o denotes the annihilator
W o ≡ {v∗ ∈ V ∗ | 〈v∗, w〉 = 0 ∀w ∈ W}.

We can illustrate this with an example. Consider the standard two-sphere

S2 embedded in R
3 by the ‘constraint’ x2 + y2 + z2 = 1. In terms of spherical

coordinates (r, θ, ϕ) we can consider a function on the sphere as simply a function

f(θ, ϕ) of the angular coordinates. Its gradient is well-defined as a one-form on
the sphere, but it is not well-defined as a one-form on R3. In fact, to write it as

a one-form on R3 we must first extend the function to a function F (r, θ, ϕ) such
that F (r = 1, θ, ϕ) = f(θ, ϕ), and then we simply take dF (restricted to r = 1)

as the one-form corresponding to df . But this clearly depends on F since ∂F/∂r
is not fixed at r = 1.

In other words, a choice of complement to TmMo in TmM is exactly a choice

of normal vectors toMo. In the absence of any additional structure on a manifold
M , there is no preferred choice. Suppose, however, thatM is given a riemannian

metric. Then we can choose as normal vectors at m ∈Mo the orthocomplement
(TmMo)

⊥ relative to the metric. This is clearly the natural choice in riemannian

geometry and it has the following nice property: T ∗
mMo

∼= ((TmMo)
⊥)o is mapped

isomorphically onto TMo under the isomorphism T ∗M → TM induced by the

metric (‘raising the index’).

In symplectic geometry—which is a closer analog to the case we are interested
in—there is no metric, but we have the next best thing: a non-degenerate 2-
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form Ω. Suppose then that (M,Ω) is a symplectic manifold and that Mo is a

submanifold. We can try to mimic the same construction: namely, define the
symplectic complement (TmMo)

⊥ as those X ∈ TmM such that Ω(X, Y ) = 0 for

all Y ∈ TmMo. We would then like to have a direct sum decomposition for all
m ∈Mo

TmM = TmMo ⊕ (TmMo)
⊥ . (2.3.2)

Unfortunately this is not always possible and this condition defines a special

kind of submanifolds Mo known as symplectic submanifolds. As a trivial
counterexample, suppose that Mo is given by the zero locus of one constraint φ.

Then the hamiltonian vector field associated to the constraint is both tangent
and symplectically normal to Mo, due to the antisymmetry of the symplectic

form.

When Mo is defined as the zero locus of independent constraints {φi}, it is
easy to give an alternative characterization of condition (2.3.2). Let Xi denote

the hamiltonian vector field associated to the the constraint φi. Then for any

vector X ∈ TM ,

Ω(X,Xi) = 〈X, dφi〉 = X · φi , (2.3.3)

whence X ∈ TMo if and only if it is symplectically perpendicular to the Xi.
In other words, TMo = 〈Xi〉

⊥. Now condition (2.3.2) says that there is no

linear combination of the Xi which is symplectically perpendicular to the Xi;
that is, that the restriction of the symplectic form to the subspace spanned by

the Xi is nondegenerate. In other words, that the matrix Ω(Xi, Xj) = {φi , φj}
is invertible everywhere on Mo. In other words, we recover precisely Dirac’s

definition of second-class constraints.

Under the assumption that Mo is a symplectic submanifold of M , we can
then mimic the riemannian case and embed T ∗

mMo in T ∗
mM as 〈Xi〉

o. That is,

α ∈ T ∗
mM belongs to T ∗

mMo if and only if 〈α,Xi〉 = 0 for all i; or, equivalently,
that Ω(J(α), Xi) = 0 for all i, where J : T ∗M → TM is the isomorphism induced

by the symplectic form. In other words, T ∗
mMo consists precisely of those 1-forms

on M which map under J to vectors tangent to Mo (recall (TmMo) = 〈Xi〉
⊥).

Notice that this last definition also makes sense in the Poisson case, since the

Poisson structure ℧ defines a map J from one-forms to vector fields. Of course, in
this case, due to the degeneracy of J , α is not uniquely defined by this condition,

since we can always add to it any one-form in the kernel of J .

Back to the symplectic case, the way to compute Poisson brackets is now
clear: you take any two functions on Mo, you extend them to functions on

M , you project their gradients to T ∗
mMo as defined above and then use these

projections to compute their Poisson bracket. The resulting expression should

then be independent of the extension. Let us see this in a bit more detail. Let
f and g be functions in Mo thought of as restrictions of functions f and g on
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M . Let Xf and Xg be their respective hamiltonian vector fields. Under the

decomposition (2.3.2) we can write them as

Xf = (Xf )o + (Xf )⊥ , (2.3.4)

and the same for g. Since the Xi span TM
⊥
o we can expand (Xf )⊥ in a linear

combination
∑

i λiXi for some functions λi which we now determine. On the
one hand,

Ω(Xj , Xf ) = {φj , f} , (2.3.5)

but also

Ω(Xj , Xf ) = Ω(Xj , (Xf )⊥)

=
∑

i

λiΩ(Xj , Xi)

=
∑

i

λi {φj , φi} . (2.3.6)

Comparing the two expressions and letting Cij denote the inverse of the matrix

{φi , φj}, we can solve for the λi and write

(Xf )o = Xf −
∑

i,j

Cij {φj , f}Xi . (2.3.7)

Doing the same for g, the resulting Poisson bracket can be written as

{f , g}D = Ω((Xf )o, (Xg)o)

= Ω(Xf , Xg)−
∑

i,j

Ω(Xf , Xi)C
ijΩ(Xj , Xg)

= {f , g} −
∑

i,j

{f , φi}C
ij {φj , g} ; (2.3.8)

that is, they are simply the Dirac brackets of equation (2.3.1). Following this

geometric line of thought it is easy to show that the bracket does not depend on
the choice of constraints {φi} used to describe Mo and that it indeed obeys the

Jacobi identity: this last remark following trivially from the fact that the Poisson
bracket is defined with respect to the the pull-back of the symplectic form via the

embedding i : Mo → M and the fact that the exterior differentiation commutes
with pull-backs.

Let us summarize our geometric strategy to deal with second-class con-

straints. To compute the Dirac bracket of two functions in the constrained
submanifold Mo, we will write them as functions on the ambient space and
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we will fix the ambiguity in their gradients in such a way, that when mapped by

J into vector fields on M , the vector fields turn out to be tangent to Mo. We
then simply compute their Poisson bracket on M but with these gradients. In

some simple examples we will be able to compare with the Dirac prescription
and check that they are in agreement, but in some others this more geometric

approach will be the only way to proceed.



Chapter Three

LAX FORMALISM AND THE KP HIERARCHY

In this chapter we briefly review the Lax formalism for KdV-type equations.
This represents a nontrivial example of a dynamical system of the type defined

at the end of Section 2.1. The underlying space will be the space of formal dif-
ferential operators of the form ∂n+ · · · generalizing the Sturm-Liouville operator

∂2+u of the KdV equation. In Section 1 we begin to set up the basic differential
calculus in this space: functions and vector fields. To define the one-forms it will

be necessary to introduce the ring of formal pseudodifferential operators, which
is done in Section 2. Also in Section 2 we turn our space into a formal Poisson

manifold via the Adler map and the associated Gel’fand–Dickey brackets. Sec-

tion 3 discusses the generalized n-KdV hierarchies and Section 4 is devoted to
the KP hierarchy. The influence of Dickey in this section is evident. A fuller

account of this topic can be found in his book [40].

3.1. CALCULUS IN THE SPACE OF LAX OPERATORS

functions

By a Lax operator of order n we mean a (one-dimensional) differential oper-
ator of the form

L = ∂n + u1∂
n−1 + · · ·+ un , (3.1.1)

where the ui are to be thought of as either rapidly decreasing smooth functions
on the real line, smooth functions on the circle, or simply as generators of a

differential ring RL (or simply R if no confusion can result). Respectively, ∂ is
to be thought of as the derivative with respect to the coordinate on the real line,

on the circle, or as the derivation on the ring R.

We let Mn denote the space of Lax operators of a fixed order n. It is clearly

an infinite-dimensional affine space modeled on the vector space of differential
operators of order n− 1 whose coefficients are differential polynomials of the ui.

We let Rn−1 denote this space. Then Mn = ∂n + Rn−1. We shall drop the
superscript from M whenever no confusion can arise.

As functions on M we shall take the integrals of differential polynomials of

27
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the ui. So a typical function on M will be of the form

F [L] =

∫
f(u) , (3.1.2)

where f(u) is a polynomial of the ui and their derivatives, and where
∫

means
different things depending on the context: it means integration over the real

line, integration over the circle, or simply the canonical projection R → R/∂R
in the more abstract algebraic setting. This last point may seem at first a

bit confusing, but it is really very simple. Think of the case on the circle.
It is clear that the integral of a total derivative vanishes. Furthermore, if an

integral vanishes, its integrand is a total derivative. Therefore there is a one-
to-one correspondence between {functions on the circle}/{total derivatives} and

integrals. In the algebraic setup, R plays the role of the functions on the circle
and so the integrals are in one-to-one correspondence with R/∂R. On a more

pragmatic level, identifying the functions with R/∂R means that integration is
linear and that we can integrate by parts.

vector fields

Vector fields in M are first order deformations of the points in M. Since

M is an affine space, the tangent space at each point can be identified with
the vector space it is modeled on, namely Rn−1. Given a differential operator

A =
∑n

j=1 aj∂
n−j ∈ Rn−1 one can define a vector field ∂A on M, whose action

on a function is given by the usual

∂AF [L] =
d

dǫ
F [L+ ǫA]

∣∣∣∣
ǫ=0

. (3.1.3)

If F is given by (3.1.2) then

∂AF =

∫ n∑

i=1

∞∑

k=0

∂f

∂u
(k)
i

a
(k)
i , (3.1.4)

where the superscript (k) means kth derivative. Integrating by parts we can
rewrite (3.1.4) as

∂AF =

∫ n∑

i=1

∞∑

k=0

(−)k

(
∂f

∂u
(k)
i

)(k)

ai , (3.1.5)

where we recognize the Euler operators

Ei =
∞∑

k=0

(−∂)k ·
∂

∂u
(k)
i

. (3.1.6)
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Notice that acting on differential polynomials of the ui the above sums over k

are actually finite. It is easy to see that the Euler operator annihilates total
derivatives, so that Ei · f

′ = 0. This implies that ∂A in (3.1.4) is well defined

because if F =
∫
(f + g′) then the expression (3.1.5) is unaltered. In other

words, ∂A descends to a map in R/∂R. A more precise statement is that the

derivation—also denoted ∂A, with a little abuse of notation—of R given by

n∑

i=1

∞∑

k=0

a
(k)
i

∂

∂u
(k)
i

(3.1.7)

commutes with ∂ and thus induces a map in the quotient R/∂R.

A remark is in order. Our choice of functions does not form a ring: there
is no natural multiplication on R/∂R induced from the one on R because ∂R is

not a multiplicative ideal. Therefore one cannot even begin to wonder whether
the vector fields act as derivations. It is possible to extend the functions in such

a way that they do form a ring, but this is an unnecessary complication which
does not enhance the formalism.

Vector fields, however, do form a Lie algebra in such a way that the functions
form a representation. Let A,B ∈ Rn−1 be tangent vectors and let ∂A and ∂B
denote the vector fields that they define. Then one has

[∂A , ∂B] = ∂[[A,B]] , (3.1.8)

where [[A,B]] is defined by

[[A,B]] = ∂AB − ∂BA

=
n∑

i=1

n∑

j=1

∞∑

k=0


 ∂bi

∂u
(k)
j

a
(k)
j −

∂ai

∂u
(k)
j

b
(k)
j


 ∂i . (3.1.9)

3.2. ONE-FORMS AND PSEUDODIFFERENTIAL OPERATORS

formal pseudodifferential operators

To define the one-forms we have to have to introduce pseudodifferential op-
erators (ΨDO’s). We first introduce a formal inverse to ∂, satisfying ∂∂−1 =

∂−1∂ = 1. This and the Leibniz rule imply the following multiplication law for
∂−1:

∂−1a = a∂−1 − a′∂−2 + a′′∂−3 − · · · , (3.2.1)

for a ∈ R any differential polynomial. That this law is correct can be easily
seen by applying ∂ on both sides of the equation. Repeated application of this
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relation yields the generalized Leibniz rule for any integer m

∂ma =

∞∑

i=0

m(m− 1) · · · (m− i+ 1)

i!
a(i)∂m−i . (3.2.2)

Notice that when m > 0 the sum truncates (at m, actually) and we have the

usual Leibniz rule. Notice also that we are forced to consider formal Laurent
series in ∂−1. Therefore we define pseudodifferential operators as R((∂−1)) with

multiplication given by the generalized Leibniz rule. One can check that this
multiplication is associative. We will use R as shorthand for the ring of ΨDO’s.

R splits as a direct sum R = R+⊕R− where R+ = R[∂] denotes the subring of
differential operators and R− = ∂−1R[[∂−1]] the subring of ‘integral’ operators.

Given any ΨDO P we will let P+ denote its projection onto R+ and P− = P−P+

its projection onto R−.

It turns out that R+ and R− are nondegenerately paired under a symmetric
bilinear form defined on R using the Adler trace [22]. Given a ΨDO P =∑

i≤N ai∂
i we define its residue by resP = a−1 and its Adler trace by TrP =∫

resP . To be allowed to call this a trace, we actually have to show that it
annihilates commutators. This follows from the following fact: if P = a∂p and

Q = b∂q are two ΨDO’s, then the residue of their commutator is total derivative.
More to the point,

res [P , Q] =

(
p(p− 1) · · · (1− q)(−q)

(p+ q + 1)!

p+q∑

i=0

(−)ia(i)b(p+q−i)

)′

. (3.2.3)

Notice that the Adler trace of a differential operator is zero, thus it does not
coincide with the standard operatorial trace. In fact, the Adler trace is the

logarithmically divergent part of the operatorial trace. That this quantity should
define a trace is not trivial: in the general case it is a result due to Dixmier [41].

With the Adler trace we can define a symmetric bilinear form on R by

〈P,Q〉 = TrPQ . (3.2.4)

It is clear that this bilinear form pairs R± nondegenerately with R∓. This
fact makes (R,R+,R−) into a Manin triple and, in particular, R− into a Lie

bialgebra. The corresponding Lie-Poisson group is called the Volterra group and
will play an important role in what follows.
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gradients and one-forms

Vector fields are parametrized byRn−1, which is nondegenerately paired with
R−/∂

−nR−. In turn, this space is in one-to-one correspondence with ΨDO’s of

the form
X = ∂−1xn + ∂−2xn−1 + · · ·+ ∂−nx1 . (3.2.5)

Indeed, if A =
∑n

i=1 ai∂
n−i ∈ Rn−1,

TrXA =

∫ n∑

i=1

xiai . (3.2.6)

Therefore we let the one-forms be parametrized by R−/∂
−nR−.

Given a function F on M its gradient is defined as the unique one-form dF

such that for any vector field ∂A,

∂AF = 〈dF,A〉 = TrAdF . (3.2.7)

Comparing with (3.1.5) it follows that the gradient is given by

dF =

n∑

i=1

∂−n+i−1 δF

δui
=

n∑

i=1

∂−n+i−1Ei · f , (3.2.8)

for F =
∫
f .

Summarizing, we have the following geometric setup in the space Mn of Lax

operators of order n:
◦ Functions Ω0 = R/∂R,

◦ Vector fields X = {∂A|A ∈ Rn−1},
◦ One-forms Ω1 = R−/∂

−nR−, and

◦ a dual pairing between Ω1 and X given by the Adler trace of their product.

the adler map and gel’fand–dickey brackets

According to the setup of Section 2.1, the next ingredient is the hamiltonian

map J : Ω1 → X defining the Poisson bracket. Based on known results about the
KdV and Boussinesq equations, Adler [22] proposed the following map (called

the Adler map)
J(X) ≡ (LX)+L− L(XL)+ , (3.2.9)

where X is a one-form. A priori J maps R− → R+ but a closer look at the
expression reveals that ∂−nR− lies in its kernel, so that it induces a map Ω1 →

R+. Moreover, the image lies in Rn−1. To see this notice that the RHS of (3.2.9)
can be written alternatively as L(XL)− − (LX)−L which explicitly shows that
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it has order less than n. Hence the Adler map defines a map from one-forms

to tangent vectors. It is easy to prove that the above map is actually skew-
symmetric. This only uses the fact that since the Adler trace only pairs up R±

with R∓, we have that TrPQ = TrP+Q− + TrP−Q+.
The bracket

{F , G}0 = Tr J(dF )dG = Tr [(LdF )+LdG− L(dFL)+dG] (3.2.10)

is therefore antisymmetric. Adler conjectured that it was Poisson and this was

proven by Gel’fand and Dickey in [24], hence its name: the second Gel’fand–

Dickey bracket. The reason for the name will be clear in a moment. We
will not reproduce here the proof of this fact. A somewhat simplified version

of the original combinatorial proof is reproduced in [40]. At least two other
proofs are known. First of all Kupershmidt and Wilson [15] noticed that this

bracket is induced by the Miura transformation as follows. Suppose that we
formally factorize the Lax operator L = (∂−v1)(∂−v2) · · · (∂−vn). This formal

factorization embeds the differential rings R into the differential ring S generated
by the vi. Let us define the following bracket on this ring. Let F̃ =

∫
f(v) and

G̃ =
∫
g(v), and put

{
F̃ , G̃

}
M

=
∑

i

∫
δF̃

δvi

(
δG̃

δvi

)′

. (3.2.11)

This bracket is clearly Poisson since the Poisson operator is simply ∂ which is
constant and hence trivially satisfies the Jacobi identity. The embedding R→ S

allows us to pull this back the above bracket. By construction, the induced
bracket is Poisson; the remarkable fact is that it actually closes back into R; and

in fact, that it agrees with the second Gel’fand–Dickey bracket (3.2.10). This

fact is known as the Kupershmidt–Wilson theorem. The original proof of this
theorem is very cumbersome and Dickey [16] gave a very simple and elementary

proof. A third proof of this fact is due to Drinfel’d and Sokolov who obtain it
by hamiltonian reduction from the Kirillov–Kostant Poisson structure (which we

define later, in the supersymmetric case) in the dual of the affine Lie algebra

A
(1)
n−1. Despite all these different proofs, the fact that the induced bracket should

close back into R has remained elusive until Wilson re-examined the result in

the light of differential Galois theory [42]. In a nutshell, Wilson introduces yet
another differential ring in which the {vi}, and hence the {ui}, are embedded and

in which there is a natural (yet nonlocal) Poisson structure. It turns out that the
structure is invariant under the action of SL(N) and that the {vi} generate the

differential subring of B+-invariants and {ui} generate the differential subring of
SL(N)-invariants. Here B+ ⊂ SL(N) is the Borel subgroup of upper triangular
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matrices. Therefore the {ui} inherit a Poisson structure which is easily seen to

coincide with the second Gel’fand–Dickey bracket, whereas no such explanation
exists for the Kupershmidt–Wilson theorem simply because the the flag space

SL(N)/B+ is not a Lie group due to B+ not being a normal subgroup.
Kupershmidt and Wilson also noticed an amusing fact about this bracket.

Suppose that we shift L → L̂ ≡ L + λ, for λ some constant parameter and
let Jλ(X) ≡ (L̂X)+L̂ − L̂(XL̂)+. Expanding in powers of λ we see that the

quadratic terms drop and we have

Jλ(X) = J(X) + λ [L , X ]+ . (3.2.12)

This induces a bracket

{F , G}λ = {F , G}0 + λ {F , G}∞ , (3.2.13)

where
{F , G}∞ = 〈[L , dF ]+ , dG〉 = Tr [L , dF ]+ dG (3.2.14)

is nothing but the first Gel’fand–Dickey bracket. Since for any L, J is a hamil-
tonian map, it follows that for all λ, Jλ is hamiltonian and that {− , −}λ will

satisfy the Jacobi identity. In particular, writing the Jacobi identity as a polyno-
mial in λ, all coefficients must vanish separately. The free coefficient is just the

Jacobi identity for the second Gel’fand–Dickey bracket and the coefficient in λ2

is similarly the Jacobi identity for the first Gel’fand–Dickey bracket. The van-

ishing of the linear coefficient implies that the two Gel’fand–Dickey brackets are
coordinated; that is, any linear combination is again a Poisson bracket. As men-

tioned in Chapter One, this is nontrivial since the Jacobi identity is quadratic and
hence contains mixed terms that are only zero under very special circumstances:

usually a symptom of integrability.

We finish this section with several interesting remarks about these brackets.
The first remark is that the first bracket can be identified with a natural bracket

on the coadjoint orbit of a formal Lie group. Notice that we can rewrite (3.2.14)
as follows:

{F , G}∞ = Tr [L , dF ]+ dG

= Tr [L , dF ] dG

= − TrL [dF , dG] . (3.2.15)

It was observed by Adler [22] and, independently, by Lebedev and Manin [23]
that this is nothing but the Kirillov–Kostant bracket on a coadjoint orbit of the

Volterra group. The Volterra group is the formal Lie group whose Lie algebra
is given by the integral ΨDO’s R− under the commutator. In other words, the
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Volterra group is justG ≡ 1+R−, and the product is induced from the associative

product in the ring of ΨDO’s. Under the Adler trace, R+ becomes identified with
the coalgebra and the Volterra group acts in R+ by the coadjoint representation.

Pick a Lax operator L ∈ Mn and consider its orbit OL = {φLφ−1|φ ∈ G} under
the Volterra group. Then OL is given precisely by the affine subspace of Mn

defined by those L with the same u1 as L, and the Kirillov–Kostant bracket on
it coincides with the first Gel’fand–Dickey bracket.

A second remark is that R+
∼= R∗

− is also a Lie algebra under the commu-
tator and that makes R− a Lie bialgebra and the Volterra group into a (formal)

Lie-Poisson group. This approach has been fruitfully exploited by Semenov-
Tyan-Shanskĭı [43] to generalize the Gel’fand–Dickey brackets to the case of an

associative algebra A = A+ ⊕A− with A± subalgebras which are isotropic rela-

tive to the symmetric bilinear form associated to a trace. If we let π± denote the
projections onto A± respectively, the operator r = π+ − π− solves the classical

Yang–Baxter equation and allows one to define two coordinated Poisson brackets
on A which reduce to the Gel’fand–Dickey ones when A is the ring of ΨDO’s.

We will prove a supersymmetric version of this theorem in Chapter Four.

Finally, we mention that under the second-class constraint u1 = 0, the

Gel’fand–Dickey brackets yield classical realizations of W-algebras. In fact, the
correspondence is as follows. The reduction of the Gel’fand–Dickey bracket as-

sociated to the Lax operator of order n yields the Wn algebra. This is the
generalization of the fact that the Magri bracket realizes Virasoro. This corre-

spondence, first noticed by Khovanova [44], has been exploited by Fateev and

Lukyanov [45] in order to define and quantize the Wn algebras by quantizing
a deformation of the Miura transformation. Prior to the work of Fateev and

Lukyanov, the only quantum Wn algebras known were the Virasoro algebra and
the W3 algebra of Zamolodchikov, which was constructed as a solution to the

conformal bootstrap.

3.3. GENERALIZED KDV HIERARCHIES

Finally we introduce some dynamics in the space of Lax operators, thus ful-

filling the setup of Section 2.1. In this section we will discuss the hierarchy of
isospectral flows of a differential operator L = ∂n +

∑
i ui∂

n−i. The isospectral

problem associated to a differential operator consists in determining the flows
which leave its spectrum invariant. We will be able to determine all isospectral

flows which are of Lax type. As we will see, these flows commute and are bihamil-
tonian with respect to the Gel’fand–Dickey brackets. Moreover the hamiltonians

generating these flows provide us with an infinite number of nontrivial, inde-
pendent, polynomial, conserved charges in involution, rendering the hierarchy
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(formally) integrable.

isospectral flows of lax type

We start by considering an arbitrary Lax operator

L = ∂n +

n∑

i=1

ui∂
n−i . (3.3.1)

By arbitrary we mean that the coefficients are differentially independent or, in

other words, that they freely generate the differential ring R. By a flow we mean
a derivation ∂t which commutes with ∂ and such that

∂tL =
n∑

i=1

(∂tui)∂
n−i . (3.3.2)

Suppose now that we realize the Lax operator as a differential operator acting

on smooth functions somewhere, and that ψ is a (formal) eigenfunction with
eigenvalue λ:

L · ψ = λψ . (3.3.3)

Then the isospectral problem associated to L consists of determining all flows

∂t such that ∂tλ = 0. In other words, applying ∂t to (3.3.3), we find that an

isospectral flow obeys

∂tL · ψ + L · ∂tψ − λ∂tψ = 0 . (3.3.4)

We can obtain isospectral flows by the Lax method. Let P be another differential

operator, and define

∂tL ≡ [P , L] . (3.3.5)

Then defining ∂tψ ≡ P ·ψ, we find that ∂tλ = 0. However, not every differential

operator P gives rise to an isospectral flow in this fashion. From (3.3.2) we see
that ∂tL is a differential operator of degree n− 1, whence we must impose that

[P , L] have at most that order. Suppose that P has order m, then in general
[P , L] has order at most m+n−1. Demanding that it have order at most n−1

imposes m conditions on P , which has a priori m+ 1 independent components.
Thus we expect that P will not be uniquely determined by its order alone.

However we notice that there is always the possibility of adding to any such P
a zeroth order operator since for any function f , [L , f ] is a possible isospectral

flow. We can take care of these ‘trivial’ flows in the following fashion. For any
function ϕ, the operators L and e−ϕLeϕ have the same spectrum. Furthermore,
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choosing ϕ judiciously5 we can gauge away the coefficient in L of order n − 1.

Therefore we can restrict ourselves to operators L of the form

L = ∂n +

n∑

i=2

ui∂
n−i . (3.3.6)

It is then easy to see that a differential operator P or order m gives a consistent
flow if [P , L] has order at most n − 2 which implies m + 1 conditions on the

m+ 1 components of P . We will see, in fact, that there is precisely one such P
of a given order.

fractional powers and the commutant

Let us define the subset ΩL of differential operators to be the set of those

differential operators P such that [P , L] is a consistent evolution equation for
the coefficients of L—in other words, [P , L] has order at most n − 1 for the

generic L or order n − 2 if u1 = 0. The isospectral problem associated to L
consists in determining this set. Towards this goal it is convenient to consider

the commutant ZL of L defined as those pseudodifferential operators commuting
with L. The next results links the commutant intimately to ΩL.

Lemma 3.3.7. If A ∈ ZL, then A+ ∈ ΩL. In fact, [A+ , L] has order at most
n− 2.

Proof. Break up A as A = A+ + A−. Then since A ∈ ZL it follows that
[A+ , L] = [L , A−]. The right-hand side is a differential operator; whereas the

left-hand side has order6 at most n− 2. �

Therefore it behooves us to study the commutant ZL of L. It does not cost

anything extra to study this in a bit more generality; so we will let L be a

pseudodifferential operator. The following result is crucial:

Proposition 3.3.8. Let L = ∂n + · · · be an otherwise arbitrary ΨDO. Then

there exists a unique ΨDO L1/n = ∂ + · · · which obeys (L1/n)n = L; and,
moreover, its coefficients are differential polynomials in the coefficients of L.

5 Of course, this choice of ϕ involves integrating u1 and hence does not live in R. Neverthe-
less, the modifications to the other uj always involve derivatives of ϕ and hence belong to
R.

6 We use here the following fact: if P and Q are ΨDO’s of orders p and q respectively, then
their product PQ has order at most p+q, and their commutator [P , Q] has order p+q−1.
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Proof. Indeed, suppose that L is given by L = ∂n +
∑

i≥1 ui∂
n−i and let

Λ = ∂ +
∑

i≥1 ai∂
1−i. Computing one finds that

Λn = ∂n + na1∂
n−1 +O(∂n−2) , (3.3.9)

whence, if we take a1 =
1
nu1, Λ

n−L = O(∂n−2). Suppose now that a1, . . . , ak−1,

differential polynomials in (the coefficients of) L, have been found so that Λn −
L = O(∂n−k−2). A brief calculation shows that the term of order ∂n−k−2 is given

by nak −X − uk, where X is some differential polynomial in the ui < k and in
the ai<k—hence in the ui<k. Therefore setting ak = 1

k (uk+X), allows to extend

the induction hypothesis one step further. It is clear that in the limit, L1/n = Λ

is the desired nth root. �

Notice that it follows from the proof that if L is a differential operator, then

the first n coefficients a1, a2, . . . , an of L1/n are differentially independent. In
fact, the map sending {u1, u2, . . . , un} to {a1, a2, . . . , an} is a differential ring

isomorphism.

The existence of the n-th root allows us to define fractional powers Lk/n of

L for any k ∈ Z, by

Lk/n =

{
(L1/n)k, for k ≥ 0 ,

(L−1/n)−k, for k < 0 ;

where L−1/n = ∂−1 + · · · is the unique inverse to L1/n whose existence is proven

in exactly the same way as the existence of the nth root. It is clear that the frac-
tional powers commute with L since they are both integer powers of L1/n. But,

in fact, it turns out that the fractional powers precisely generate the commutant.

Proposition 3.3.10. As a vector space over the constants, ZL is generated
by the fractional powers Lk/n, for k ∈ Z.

Proof. Let A =
∑

i≤m ai∂
i be a ΨDO of order m which commutes with L. We

compute [A , L] and we set each coefficient equal to zero. The term of highest

order, O(∂n+m−1), is proportional to a′m, whence we deduce that am is a constant.
Therefore A− amL

m/n is a ΨDO of order at most m− 1 which commutes with

L. By induction we are done. �

It follows from Lemma 3.3.7 that for all non-negative integers r, L
r/n
+ ∈ ΩL.

In fact we have the following

Proposition 3.3.11. For L = ∂n + · · · an otherwise arbitrary ΨDO, ΩL is

generated by the L
r/n
+ for r ∈ N and by R. When we impose that u1 = 0, then

ΩL is generated only by the L
r/n
+ , for r = 0, 1, . . ..
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Proof. Suppose that P =
∑m

i=0 ai∂
i ∈ ΩL, for some m > 0. Then the highest

order term in [P , L] is of order ∂n+m−1 which, for m > 0, must vanish for

P ∈ ΩL. The coefficient is proportional to a′m, whence we find that am is a

constant. Therefore P − amL
m/n
+ ∈ ΩL is a differential operator of order m− 1.

Continuing in this fashion we arrive at a zeroth order operator—i.e., an element
of R—which from a previous remark is trivially in ΩL as long as u1 is different

from zero. Otherwise, we must demand that [P , L] have order at most n − 2,
whence only the constants in R survive. �

flows and conserved charges

Each differential operator in ΩL defines a flow on the space of Lax operators
as follows:

∂iL ≡
[
L
i/n
+ , L

]
. (3.3.12)

If L is a differential operator then the flows ∂rn are trivial since Lr
+ = Lr com-

mutes with L. The above hierarchy of flows determines the n-KdV hierarchy.
The first important property of the Lax flows is that they commute. The proof

follows by a routine calculation.

Proposition 3.3.13. For all i, j ∈ N, ∂i∂jL = ∂j∂iL. �

This means that we can introduce an infinite number of times {t1, t2, . . .} such

that ∂i = ∂/∂ti.
Because the Lax flows are given in terms of commutators, we can immediately

write down conservation laws using the Adler trace. Indeed, for r ∈ N, let

Hr ≡
n
r TrL

r/n . (3.3.14)

Again, if L is a differential operator, Hjn = 0 since Lj is differential and therefore
traceless. It is clear that these functions are polynomial and moreover that they

are conserved, since
∂Hr

∂ti
= n

r Tr
[
L
i/n
+ , Lr/n

]
= 0 , (3.3.15)

where we have used that ∂tL = [P , L] if and only if ∂tL
q = [P , Lq], for any

fractional power q.

We will now show that they are nontrivial and independent. Independence
follows simply from a grading argument. Let us define the following grading:

[∂] = 1, and let us define the grading on R by demanding that [L] = n, so that
[ui] = n − i, and that [f ′] = [f ] + 1 for any homogeneous element f in R. If

we further define [∂−1] = −1, then the ring of ΨDO’s becomes a graded ring
and hence [Lr/n] = r. Therefore [TrLr/n] = r and its gradient—which will be

computed shortly—has grade [dHr] = r − n, whence the gradients are linearly
independent.
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From now on we will restrict L to be a differential operator. This way we

can apply the differential calculus we set up in the space M of Lax operators.
Let us first compute the gradient of Hr. By definition, if A is any vector

field, the gradient dHr is defined by

Tr dHrA =
d

dǫ
Hr[L+ ǫA]

∣∣∣∣
ǫ=0

. (3.3.16)

A simple exercise in the calculus developed in Section 1 yields,

dHr = L
r/n−1
− mod ∂−nR− . (3.3.17)

bihamiltonian structure

We are now in a position to prove that the Hr generate the Lax flows relative

to the Gel’fand–Dickey brackets.
Recall that the Gel’fand–Dickey brackets are induced from the following

hamiltonian maps:

J0(X) = (LX)+L− L(XL)+ = L(XL)− − (LX)−L ,

J∞(X) = [L , X ]+ ,

for any 1-form X . In particular, let us compute

J0(dHr) = J0(L
r/n−1
− )

= L(L
r/n−1
− L)− − (LL

r/n−1
− )−L

= LL
r/n
− − L

r/n
− L

=
[
L
r/n
+ , L

]
=
∂L

∂tr
, (3.3.18)

which implies that for any function F , its evolution in the tr direction is given
by

∂F

∂tr
= {Hr , F}0 . (3.3.19)

Similarly,

J∞(dHr+n) =
[
L , L

r/n
−

]
=
[
L
r/n
+ , L

]
=
∂L

∂tr
, (3.3.20)

whence
∂F

∂tr
= {Hr+n , F}∞ . (3.3.21)

In other words, the Lax flows are bihamiltonian with respect to the two Gel’fand–
Dickey brackets—the rth flow ∂tr being generated by Hr+n and Hr relative to
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the first and second brackets, respectively. The relations

J∞(dHr+n) = J0(dHr) (3.3.22)

are known as the Lenard recursive relations for the conserved charges. In prin-
ciple, knowing Hr for r = 1, 2, . . . , n− 1, one can determine all the others using

the recursion relations.
As a result of the conservation of the Hr, we find that they are in involution

with respect to both Gel’fand–Dickey brackets. In other words, for all i, j

0 =
∂Hi

∂tj
= {Hj , Hi}0 = {Hj+n , Hi}∞ . (3.3.23)

It is not difficult to show, using the bihamiltonian structure, that the con-
served charges are in fact nontrivial, for if Hi were trivial, so would the flows ∂i
and ∂i−n, and this can in turn be seen to imply that Hi−n is trivial. Continuing
in this fashion, we arrive at a contradiction since it is easy to see explicitly that

the first n− 1 conserved quantities H1, H2, . . . , Hn−1 are nontrivial.
In summary, we have exhibited an infinite number of nontrivial, indepen-

dent, polynomial, conserved quantities in involution relative to the bihamiltonian
structure. This proves that n-KdV is (formally) completely integrable.

3.4. THE KP HIERARCHY: A UNIVERSAL KDV HIERARCHY

We saw in the previous section that, in the systematic treatment of the
generalized KdV hierarchies, a crucial role was played by the n-th root L1/n of

the Lax operator. This is a ΨDO of the form

Λ = ∂ +

∞∑

i=1

ai∂
1−i , (3.4.1)

obeying the constraint

Λn
− = 0 , (3.4.2)

and such that n is the smallest natural number for which this is true. We also
saw that this constraint meant that the first n coefficients in Λ are differentially

independent and that, in fact, they freely generated the differential ring of the
coefficients of L. The Kadomtsev-Petviashvili (KP) hierarchy is defined as the

hierarchy of isospectral flows of a ΨDO Λ of the form (3.4.1) without imposing
the constraint (3.4.2); that is, a ΨDO Λ all whose coefficients are independent.

Similar arguments to the ones given in the last section justify the reduction
a1 = 0.
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lax flows and conserved charges

We are again interested in flows of Lax type; that is, generated by differential
operators Π such that

∂tΛ = [Π , Λ] (3.4.3)

is a consistent evolution equation. This means that the right-hand side has order

at most 0 for the unreduced operator or −1 when a1 = 0. Let us call the set of
such Π, ΩΛ. We let ZΛ denote the commutant of Λ in the set of ΨDO’s. As in

the KdV hierarchies, there is an intimate connection between ZΛ and ΩΛ.

Lemma 3.4.4. If A ∈ ZΛ, then A+ ∈ ΩΛ and, in fact, [A+ , Λ] has order at
most −1.

Proof. If [A , Λ] = 0, then [A+ , Λ] = [Λ , A−], which has order at most −1. �
Analogous to Proposition 3.3.10 and Proposition 3.3.11 we have the following

two results:

Proposition 3.4.5. As a vector space over the constants, ZΛ is generated by
the powers Λk of Λ, for k ∈ Z. �

Proposition 3.4.6. ΩΛ is generated by Λr
+ for r ∈ N and by the differential

ring RΛ generated by the coefficients of Λ. When we impose that a1 = 0, then
ΩΛ is simply generated by Λr

+, for r = 0, 1, . . .. �

Until further notice we will work with the reduced KP operator where a1 = 0.

Each Λi
+ ∈ ΩΛ defines an isospectral flow

∂iΛ =
[
Λi
+ , Λ

]
; (3.4.7)

and, again, one can show that, analogously to Proposition 3.3.13, they commute
so that we can introduce an infinite number of times {t1, t2, . . . , tn} so that

∂i = ∂/∂ti:

Proposition 3.4.8. For all i, j ∈ N, ∂i∂jΛ = ∂j∂iΛ. �

For each i ∈ N let us define the function hi ≡
1
i TrΛ

i. Using the fact that the
Adler trace annihilates commutators, it follows that these obviously polynomial

quantities are conserved. They are nontrivial because res Λi = ai+1 + · · ·—
where · · · is some differential polynomial of the aj≤i—and if it were a total

derivative, there would exist a differential relation between the ai, which violates
the hypothesis of their independence. Independence of the hi is proven again via

the introduction of a grading such that [∂] = 1 and [ai] = i such that [Λ] = 1.
Then [Tr Λi] = i+ 1 and their gradients are thus linearly independent.
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reduction to the n-kdv hierarchy

The phase space of the n-KdV hierarchy is the space of Lax operators L of

order n with u1 = 0. Since every such operator has a unique nth root of the
form L1/n = ∂ + O(∂−1), this space is isomorphic to the space of ΨDO’s Λ of

the form Λ = ∂ + O(∂−1) such that Λn
− = 0, which is clearly a subspace of the

phase space of the KP hierarchy. Moreover, this subspace is preserved by the
KP flows. Indeed, if Λ obeys the evolution equation

∂Λ

∂ti
=
[
Λi
+ , Λ

]
, (3.4.9)

so does Λn–that is,
∂Λn

∂ti
=
[
Λi
+ , Λ

n
]
. (3.4.10)

Therefore, if Λn
− = 0, then

(
∂Λn

∂ti

)

−

=
[
Λi
+ , Λ

n
]
−
= 0 , (3.4.11)

since Λn = Λn
+. Under the map Λn = L, these flows are precisely the flows

∂L

∂ti
=
[
L
i/n
+ , L

]
(3.4.12)

of the n-KdV hierarchy. Moreover, and up to a factor n, the conservation laws

are precisely the ones of the KdV hierarchy, the ones for i a multiple of n being
trivial.

Therefore we conclude that the n-KdV hierarchy is a reduction of the KP
hierarchy; or, in other words, that the KP hierarchy is a universal hierarchy for

the KdV series.

The calculus developed in Section 1 can be extended to handle the space
of pseudodifferential operators Λ. This is done, for example, in [40]. It turns

out that the KP hierarchy is again bihamiltonian with respect to a version of
the Gel’fand–Dickey brackets induced by an Adler-type map. In fact, in view

of the result of Semenov-Tyan-Shanskĭı quoted at the end of Section 1, this is
not surprising. What may be surprising is that the KP hierarchy is hamiltonian

relative to a one-parameter family of such hamiltonian structures analogous to
the second Gel’fand–Dickey bracket. This result was obtained independently by

Figueroa-O’Farrill, Mas and Ramos in [46] and by Khesin and Zakharevich [47].
It extends previous work of Radul [48] who found an infinite discrete family of

such structures. The original hamiltonian structure for the KP hierarchy was
discovered by Dickey [49].
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The Poisson structures of the KP hierarchy provide examples of infinitely-

generated W-algebras of the W∞-type. These are deformations of the algebra
w∞ of area preserving diffeomorphisms on a two-dimensional phase space. These

algebras are not yet classified, but all known such algebras can be related [50] via
contractions or reductions to the one-parameter family of hamiltonian structures

for the KP hierarchy discovered in [46] and [47]. W∞-type algebras have started
to appear naturally in physical problems like the quantum Hall effect.

dressing transformations

The KP hierarchy can be understood as a dynamical system on a formal Lie
group. Let G denote the formal Lie group of ΨDO’s of the form 1 +

∑
iwi∂

i.

We don’t take the wi to be elements of R for reasons that will become obvious
in a moment, but rather in some extension. Let Λ be a ΨDO of the form ∂ +∑

i≥1 ai∂
1−i. It is not hard to prove that provided that we allow ourselves to

formally integrate the ai, we can undress Λ as follows:

Λ = φ∂φ−1 for some φ ∈ G . (3.4.13)

In fact, φ is unique up to multiplication on the right by an element of G with

constant coefficients. We can fix this ambiguity by demanding homogeneity of
φ and demanding that the only constants have degree zero. We can now lift the

KP flows via (3.4.13) to flows on the Volterra group G. The following results
after a trivial computation:

Proposition 3.4.14. The flows

∂nφ =
∂φ

∂tn
≡ −(φ∂nφ−1)−φ

induce via (3.4.13) the flows (3.4.7). �

It is amusing and moreover practical when we consider the additional sym-
metries in Chapter Five, to understand these flows in a different way. Let us

extend the ring of ΨDO’s by the derivations ∂n of (3.4.7) in such a way that
∂∂n = ∂n∂. Then consider the trivial relation [∂n − ∂n , ∂] = 0. If we dress this

relation with φ we recover the flows in Proposition 3.4.14. We will exploit this
approach to the KP hierarchy and to its supersymmetric extensions in Chapter

Five when we discuss the algebra of additional symmetries.



Chapter Four

SUPERSYMMETRIC INTEGRABLE HIERARCHIES

We now start the discussion of supersymmetric integrable hierarchies. Just as

in the nonsupersymmetric case we need to develop some formalism to handle the
infinite-dimensional spaces of Lax operators. As before the arena will be the ring

of formal superpseudodifferential operators SΨDO’s. We discuss them in Section
1. After defining and reviewing the basic properties of this ring we discuss the

formal geometry in the space of Lax operators and we prove that this space can be
given the structure of a Poisson manifold relative to the supersymmetric version

of the Adler map. The proof of this fact is done in somewhat more generality.

It is the supersymmetric analogue of a theorem of Semenov-Tyan-Shanskĭı, and
we believe that it appears here for the first time. In Section 2 we discuss the

various supersymmetric extensions of the KP hierarchy and we set the stage for
the study of their additional symmetries in the following chapter. Most of the

material in this chapter follows the series of papers [29], [33], [51], [32], and
[52].

4.1. SUPERSYMMETRIC LAX FORMALISM

pseudodifferential operators in superspace

Let k be an arbitrary field of characteristic zero and let S = S0 ⊕ S1 denote

a Z2-graded ring over k. Let S be moreover endowed with an odd derivation D.
Then D2 is an even derivation which we will call ∂. We will think of S as our

function space. As an example we can take S to be the ring

k[[x, θ]] = k[[x]]⊕ k[[x]]θ (4.1.1)

of formal power series in an even variable x and an odd variable θ, satisfying

xθ = θx and θ2 = 0. The Z2-grading is defined by putting |x| = 0 and |θ| = 1,

and the odd derivation is given by D = ∂θ + θ∂, where ∂ = ∂/∂x. When we
come to discuss supersymmetric hierarchies, we will take S to be the differential

ring generated by some superfields Ui ∈ k[[x, θ]].

In any case, the odd derivation D obeys the supersymmetric analog of the

44
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Leibniz rule

D(ab) = D(a)b+ (−)|a|aD(b) , (4.1.2)

where a is a homogeneous element of S of Z2-degree |a| and |D| = 1. We

further define the ring of supersymmetric pseudodifferential operators (SΨDO)
with coefficients in S

S ≡ S((D−1)) =

{
P =

∑

i≫−∞

aiD
−i

∣∣∣∣∣ ai ∈ S

}
. (4.1.3)

The ring of SΨDO’s can be given the structure of a superalgebra using the
generalized Leibniz rule

Dka =

∞∑

i=0

[
k

k − i

]
(−)|a|(k−i)a[i]Dk−i , (4.1.4)

where a is a homogeneous element of S and
[

k
k−i

]
are the so-called superbinomial

coefficients given by

[
k

k − i

]
=





0 for i < 0 or (k, i) ≡ (0, 1) mod 2;( [
k
2

]

[
k−i
2

]

)
for i ≥ 0 and (k, i) 6≡ (0, 1) mod 2.

The generalized Leibniz rule follows from the one for ∂ (given in (3.2.2)) by

taking D2k = ∂k and D2k+1 = ∂kD. Since the Z2-grading gets induced here we
have that S = S0 ⊕ S1 where

S0 = S0((D
−1)) =

{
∑

i≫−∞

aiD
−i

∣∣∣∣∣ |a2i| = 0 , |a2i+1| = 1

}
, (4.1.5)

and

S1 = S1((D
−1)) =

{
∑

i≫−∞

aiD
−i

∣∣∣∣∣ |a2i| = 1 , |a2i+1| = 0

}
, (4.1.6)

and we have thus defined the notion of an even (respectively odd) SΨDO.

In the case S = k[[x, θ]] or some freely-generated subring, let us remark the

following fact:

S((D−1)) = S((∂−1))⊕ S((∂−1))∂θ . (4.1.7)

Indeed, on the one hand we clearly have S((∂−1))⊕S((∂−1))∂θ ⊂ S((D−1)) since
D2 = ∂ and ∂θ = D− θD2. On the other hand any SΨDO can be written in the
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following manner:
∑

i

aiD
i =

∑

i

a2iD
2i +

∑

i

a2i+1D
2i+1

=
∑

i

a2i∂
i +
∑

i

a2i+1∂
i(∂θ + θ∂)

=
∑

i

(a2i + a2i+1θ) ∂
i +
∑

i

a2i−1∂
i∂θ , (4.1.8)

so that we have also S((D−1)) ⊂ S((∂−1))⊕ S((∂−1))∂θ.
In general it is important to distinguish in the ring of SΨDO’s the subring

of supersymmetric differential operators (SDOP’s)

S+ ≡ S[D] =





∑

0≤i≪∞

aiD
i

∣∣∣∣∣∣
ai ∈ S



 , (4.1.9)

with respect to which we have the splitting

S = S+ ⊕ S− , (4.1.10)

where

S− ≡ D−1S[[D−1]] =

{
∞∑

i=1

aiD
−i

∣∣∣∣∣ ai ∈ S

}
(4.1.11)

denotes the integral SΨDO’s. If P ∈ S is any SΨDO we shall denote by P± its
projection onto S± along S∓.

The ring S of SΨDO’s can be made into a filtered associative k-algebra if we
define the space supersymmetric pseudodifferential operators of order n by

Sn =

{
P =

∑

i

aiD
i ∈ S[D]

∣∣∣∣∣ ordP ≤ n

}
, (4.1.12)

where we say that ordP = n if ai = 0 for all i > n and an 6= 0. We have then

Sn ⊂ Sn+1 and S = ∪n∈ZS
n (4.1.13)

and under the multiplication Sp × Sq → Sp+q . Moreover defining a bracket

[ ] : Sp × Sq → Sp+q (4.1.14)

via the graded commutator [AB] ≡ AB − (−)|A||B|BA, S becomes a Lie super-
algebra.
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Let us end this discussion on the ring of SΨDO’s by introducing the super-

symmetric analog of the Adler trace. If P =
∑

i aiD
i, we define its noncom-

mutative super-residue by sresP = a−1. In order to define the supertrace we

need to introduce a notion of integration. As in Section 3.1 this can be de-
fined abstractly as the canonical projection

∫
: S → S/DS, which simply means

dropping the perfect derivatives. In the presence of a more explicit realization
for S, say as a subring of k[[x, θ]], we can make the notion of integration more

concrete by considering the Berezinian. For any homogeneous differential poly-
nomial of {Ui = ui + θvi}, f(U) = a(u, v) + θb(u, v), the Berezinian is defined

by
∫
B f(U) =

∫
b(u, v). For such rings S, the only difference between the two

notions of integration consists in the fact that the abstract integration is an even

operation, whereas the Berezinian has a Z2-degree of one. In any case the Adler
supertrace is defined by

Str =

∫
◦ sres . (4.1.15)

. It is a straightforward computation to show that, analogously to (3.2.3),
the super-residue of a graded commutator is a perfect D derivative, so that

Str[A,B] = 0, for two SΨDO’s A and B.

geometry of the space of lax operators

One of the central objects in our formalism is the space of supersymmetric
Lax operators of degree n, defined by

Mn ≡

{
L = Dn +

∞∑

i=1

UiD
n−i

∣∣∣∣∣Ui ∈ S, |Ui| ≡ i mod 2

}
. (4.1.16)

(We shall drop the subscript n whenever no confusion can arise.) Given any
L ∈ M ⊂ S one can define SL the differential subring generated by the Ui’s which

will obviously induce the corresponding subrings SL[D] ⊂ S[D] and SL[[D
−1]] ⊂

S[[D−1]]. M is an infinite-dimensional affine space modeled on the vector space

Sn−1 of SΨDO’s of order n− 1. Our aim is to endow this space with a Poisson
structure. Using the formalism in Sections 3.1-2 as a guide, we will define Poisson

brackets on functions of the form:

F [L] =

∫

B
f(U) , (4.1.17)

where f(U) is a homogeneous differential polynomial of the U ’s and
∫
B is the

previously defined Berezinian. It is worth remarking that whereas SL is a graded

supercommutative algebra, DSL is not an ideal and hence the multiplication in
SL does not get induced in the quotient. This means, in particular, that it will
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not make sense to demand of our Poisson brackets to satisfy the usual derivation

property but this, fortunately, will not affect the formalism.
The tangent space TLM toM at the point L is isomorphic to the infinitesimal

deformations of L, which are pseudodifferential operators of order at most n−1.
In other words the tangent space is isomorphic to Sn−1 itself, namely

TLM ≡

{
A =

∞∑

i=1

AiD
n−i

∣∣∣∣∣Ai ∈ S, |Ai| ≡ |A|+ n− i mod 2

}
. (4.1.18)

Then to every tangent vector A ∈ TLM one can associate a vector field DA

whose action on any f ∈ SL is defined by

DAf ≡
d

dǫ
f (Ui + ǫAi)

∣∣∣∣
ǫ=0

=

∞∑

i=1

∞∑

k=0

(−)(|A|+n)kA
[k]
i

∂f

∂U
[k]
i

, (4.1.19)

where we do not impose a priori that ǫ be even; in other words, |L| and |A| need
not agree. A straightforward computation shows us that

DAD = (−)(|A|+n)DDA . (4.1.20)

Notice that DA : SL → SL induces a map—also denoted DA with some
abuse of notation—DA : SL/DSL → SL/DSL given by DA

∫
f =

∫
DAf . More

explicitly if we denote F [L] =
∫
B f , then the vector field DA defined by A is

given by

DAF = (−)|A|+n

∫

B

n−1∑

k=0

AkEk · f, (4.1.21)

where we have introduced the Euler operators

Ek =
∞∑

i=0

(−)|Uk|i+i(i+1)/2Di ∂

∂U
[i]
k

, (4.1.22)

with U
[i]
k = DiUk. One can check that DA is well defined. But in this case since

SL/DSL is no longer a superalgebra, DA is no longer a derivation.

We expect the cotangent space T ∗
LM to M at L to be defined as the dual

space of TLM. In order to see this we introduce a dual pairing in S given by

< A,B >≡ StrAB , (4.1.23)

under which S[D] and D−1S[[D−1]] are maximally isotropic spaces and nonde-
generately paired with each other. Indeed, if we take X =

∑∞
k=0D

−k−1Xk ∈ S−



4.1 Supersymmetric Lax Formalism 49

and A =
∑n−1

k=0 AkD
k ∈ S+, their pairing is given by

StrAX = (−)|X|+1

∫

B

n−1∑

k=0

(−)kAkXk . (4.1.24)

Hence the tangent space TLM is nondegenerately paired (via the pairing defined
in (4.1.23)) with the quotient space S/D−nS− and therefore we have

T ∗
LM

∼= S/D−nS− . (4.1.25)

A generic element here will be then an integral operator X ∈ S− of the form
X =

∑n−1
k=0 D

−k−1Xk and, with a little abuse of notation, we also let X denote

the one-form it gives rise to at L. Thus if X and A are as above, the pairing

between the vector field DA and the one-form X is given by

〈DA, X〉 ≡ (−)|A|+|X|+n+1 StrAX = (−)|A|+n

∫

B

n−1∑

k=0

(−)kAkXk . (4.1.26)

The strange choice of signs has been made to avoid undesirable signs later on.
Given a function F =

∫
B f we define its gradient dF by 〈DA, dF 〉 = DAF

whence, comparing with (4.1.21), yields

dF =

n−1∑

k=0

(−)kD−k−1Ek · f . (4.1.27)

Thus, the gradient of a function is a one-form as expected.

To define a Poisson bracket we need a hamiltonian map J : T ∗
LM → TLM.

Given any two functions F and G, their Poisson bracket {F , G} is defined by

{F , G} ≡ DJ(dF )G = 〈DJ(dF ), dG〉 = (−)|J |+|F |+|G|+n+1 StrJ(dF )dG .
(4.1.28)

J is hamiltonian if and only if this obeys the appropriate (anti)symmetry prop-
erties and the Jacobi identity.

If L is a superdifferential operator, the supersymmetric analogue of the Adler
map J : T ∗

LM → TLM given by

J(X) = (LX)+L− L(XL)+ = L(XL)− − (LX)−L (4.1.29)

was shown in [18] to be hamiltonian as a corollary of a supersymmetric version
of the Kupershmidt–Wilson theorem. In other words, what was shown was that
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J is induced from a much simpler hamiltonian map in a different set of variables

Φi defined by the formal factorization L = (D − Φn)(D − Φn−1) · · · (D − Φ1).
The fundamental Poisson bracket in these variables is given by

{Φi(X) , Φj(Y )} = (−)iδijDδ(X − Y ) , (4.1.30)

where, if X = (x, θ) and Y = (y, ω), then δ (X − Y ) = δ(x − y)(θ − ω). The

change of variables from the Uj to the Φi is a supersymmetric version of the Miura
transformation. This factorization depends crucially on L being differential.

When L is a pseudodifferential operator, there is no known analogue of the Miura
transformation even in the nonsupersymmetric case. Many of the hierarchies we

will consider, however, will be defined as isospectral deformations of a suitable
class of SΨDO’s for which we will need to prove the hamiltonian nature of the

corresponding Adler map. Therefore it prompts us to find a proof that does
not rely on the Kupershmidt–Wilson theorem. Again for L differential, this was

proven in [51] in a combinatorial fashion. In the next section we will give a
more general proof which is valid for a variety of algebraic situations and not

just for superpseudodifferential operators. This is the supersymmetric analogue
of a theorem due originally to Semenov-Tyan-Shanskĭı.

4.2. THE HAMILTONIAN PROPERTY OF THE ALGEBRAIC ADLERMAP

Let g be an associative superalgebra over a field k of zero characteristic and
suppose that it decomposes as the vector space direct sum of two subsuperal-

gebras g = g+ ⊕ g−. In other words, g is a Z2-graded vector space such that
there is an associative multiplication which respects the grading and g± is a

graded subspaces which is closed under the multiplication. From now on we will
simply call g an algebra and speak of g± as a subalgebra. Given any element

X ∈ g we denote by X± its projection to g± along g∓. Suppose further than we
have a nondegenerate supertrace form Str : g → k inducing a supersymmetric

bilinear form 〈X, Y 〉 = StrXY which is maximally split; that is, such that the
subalgebras g± are maximally isotropic; in other words, StrX±Y± = 0.

Choose a homogeneous element L ∈ g and define the generalized Adler map
J : g → g as

J(X) = (LX)+L− L(XL)+ = L(XL)− − (LX)−L . (4.2.1)

We can view this as an infinitesimal deformation δXL = J(X). More geometri-

cally, however, we can view J(X) as a vector field tangent to g at L as follows.
Since g is a linear space, we can identify its tangent and cotangent spaces with
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the algebra itself and, moreover, the dual pairing between the tangent and cotan-

gent spaces is given by the trace form. Then J can be interpreted as a way to
assign vector fields to one-forms. Notice, that the parity of the vector field δX
is not necessarily the parity of X , but rather it is the sum of the parities of X
and L. Let us then introduce the following notation: we will denote by |X| the

parity of X and by |X̄| = |X| + |L|, where we of course sum modulo 2. We
furthermore use the abbreviation ε = |L|. We continue introducing conventions.

If B is a bilinear form on g we shall say that it is s-skewsymmetric if

B(X, Y ) = −(−)|X̄ ||Ȳ |B(Y,X) , (4.2.2)

for any two homogeneous elements X and Y . This will turn out to be the natural

notion of skewsymmetry in the Z2-graded case. If X, Y, Z are homogeneous
elements of g and f : (X, Y, Z) 7→ f(X, Y, Z) is any function (perhaps g-valued),

we define the Z2 graded version of cyclic and signed permutations:

C
X,Y,Z

f(X, Y, Z) ≡ f(X, Y, Z) + (−)|X̄ |(|Ȳ |+|Z̄|)f(Y, Z,X)

+ (−)|Z̄|(|X̄ |+|Ȳ |)f(Z,X, Y )

S
X,Y,Z

f(X, Y, Z) ≡ C
X,Y,Z

(
f(X, Y, Z)− (−)|Ȳ ||Z̄|f(X,Z, Y )

)
.

The first thing we prove is that the vector fields obtained by J close under

the Lie bracket or, in terms of the infinitesimal deformations δX , that they too
form a closed algebra under the (graded)commutator. It is clear that by linearity

we can restrict ourselves to homogeneous X .

Lemma 4.2.3. For all X, Y ∈ g, independent of L,

[δX , δY ] = δ[X ,Y ]∗L
,

where [X , Y ]∗L is given, modulo the kernel of J , by

[X , Y ]∗L = X(LY )− − (XL)+Y − (−)|X̄ ||Ȳ |(X ↔ Y ) . (4.2.4)

Proof. Using that δXL = J(X), what we want to show is equivalent to

δXJ(Y )− (−)|X̄ ||Ȳ |δY J(X) = J([X , Y ]∗L) . (4.2.5)
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The LHS of this equation can be expanded to

(J(X)Y )+L+ (−)|X̄ ||Ȳ |(LY )+J(X)− J(X)(Y L)+

− (−)|X̄ ||Ȳ |L(Y J(X))+ − (−)|X̄ ||Ȳ |(X ↔ Y )

= ((LX)+LY )+L− (L(XL)+Y )+L+ (−)|X̄ ||Ȳ |(LY )+(LX)+L

− (−)|X̄ ||Ȳ | (LY )+L(XL)+ − (LX)+L(Y L)+︸ ︷︷ ︸−(−)|X̄ ||Ȳ |L(Y (LX)+L)+

+ (−)|X̄ ||Ȳ |L(Y L(XL)+)+ + L(XL)+(Y L)+ − (−)|X̄ ||Ȳ |(X ↔ Y )

= (LX(LY )−)+L− (L(XL)+Y )+L+ L(X(LY )+L)+

− L((XL)−Y L)+ − (−)|X̄ ||Ȳ |(X ↔ Y ) ,

where the underbraced terms cancel under X ↔ Y and we notice that

((LX)+LY )+L− (LX)+(LY )+L = (LX(LY )−)+L

L(XL)+(Y L)+ − L(XL(Y L)+)+ = −L((XL)−Y L)+ .

Moreover since

(LX(LY )−)+L+ L(X(LY )+L)+ = J(X(LY )−) + L(XLY L)+

(L(XL)+Y )+L+ L((XL)−Y L)+ = J((XL)+Y ) + L(XLY L)+ ,

we can rewrite the LHS of (4.2.5) as

J(X(LY )− − (XL)+Y )− (−)|X̄ ||Ȳ |(X ↔ Y ) ,

proving thus the lemma. �

If X and Y are allowed to depend on the point L—as they very well could,
under their identification with one-forms on g—we would incur in terms of the

form (−)|X̄ |εJ(δXY ) − (−)|X̄ ||Ȳ |(X ↔ Y ) in the LHS of (4.2.5). These terms
clearly go along for the ride and all they do is modify the bracket [X , Y ]∗L. This

modification, though, is important; for suppose that one asks oneself whether
[− , −]∗L is a Lie bracket. It is clearly s-skewsymmetric, so that all we need to

check is the Jacobi identity. From the definition, [δX , δY ] = δ[X ,Y ]∗L
and the

fact that the commutator on the LHS satisfies the Jacobi identity trivially, we

expect that

JacobiL(X, Y, Z) ≡ C
X,Y,Z

[
X , [Y , Z]∗L

]∗
L
= 0 . (4.2.6)

But in computing the nested [− , −]∗L brackets, we notice that even if X , Y , and
Z do not depend on L, [Y , Z]∗L does, so we need to include the terms δX [Y , Z]∗L.

These terms are indeed crucial to check the Jacobi identity for [− , −]∗L, as we
now show.



4.2 The Hamiltonian Property of the Algebraic Adler Map 53

Proposition 4.2.7. The bracket

[X , Y ]∗L ≡ (−)|X̄ |εδXY +X(LY )− − (XL)+Y − (−)|X̄ ||Ȳ |(X ↔ Y )

satisfies the Jacobi identity.

Proof. Let X, Y, Z ∈ g be homogeneous. We will show that (4.2.6) holds. For

simplicity we work under the assumption that X, Y, Z are L-independent so that
we have no terms of the form δXY . The general case is no harder to prove. By

definition,

[
X , [Y , Z]∗L

]∗
L
= (−)|X̄ |εδX [Y , Z]∗L +X(LY (LZ)−)− −X(L(Y L) + Z)−

−(XL)+Y (LZ)− + (XL)+(Y L)+Z − (−)|X̄ |(|Ȳ |+|Z̄|)Y (LZ)−(LX)−

+(−)|X̄ |(|Ȳ |+|Z̄|)(Y L)+Z(LX)− + (−)|X̄ |(|Ȳ |+|Z̄|)(Y (LZ)−L)+X

−(−)|X̄ |(|Ȳ |+|Z̄|)((Y L)+ZL)+X − (−)|Ȳ ||Z̄|(Y ↔ Z) .

Also by definition,

δX [Y , Z]∗L = (−)|X̄ ||Y |Y (J(X)Z)−− (−)|X̄ ||Y |(Y J(X))+Z− (−)|Ȳ ||Z̄|(Y ↔ Z) ,

which we choose to write as (−)|X̄ ||Y | times

Y ((LX)+LZ)− − Y (L(XL)+Z)− − (Y (LX)+L)+Z

+(Y L(XL)+)+Z − (−)|Ȳ ||Z̄|(Y ↔ Z) .

Therefore we can write

JacobiL(X, Y, Z) = S
X,Y,Z

[
(−)|X̄ ||Ȳ |Y ((LX)+LZ)− − (−)|X̄ ||Ȳ |Y (L(XL)+Z)−

−(−)|X̄ ||Ȳ |(Y (LX)+L)+Z + (−)|X̄ ||Ȳ |(Y L(XL)+)+Z +X(LY (LZ)−)−

−X(L(Y L)+Z)− − (XL)+Y (LZ)−︸ ︷︷ ︸+(XL)+(Y L)+Z−

(−)|X̄ |(|Ȳ |+|Z̄|)Y (LZ)−(LX)− + (−)|X̄ |(|Ȳ |+|Z̄|) (Y L)+Z(LX)−︸ ︷︷ ︸
+(−)|X̄ |(|Ȳ |+|Z̄|)(Y (LZ)−L)+X − (−)|X̄ |(|Ȳ |+|Z̄|)((Y L)+ZL)+X

]
,

where the underbraced terms cancel after taking into account the signed permu-

tations. Now we notice that

S
X,Y,Z

−(XL)+Y (LZ)− + (−)|X̄ |(|Ȳ |+|Z̄|)(Y L)+Z(LX)− = 0 ,

S
X,Y,Z

X(LY (LZ)−)− − (−)|X̄ |(|Ȳ |+|Z̄|)Y (LZ)−(LX)− = S
X,Y,Z

X((LY )+LZ)− ,

and

S
X,Y,Z

(XL)+(Y L)+Z + (−)|X̄ ||Ȳ |(Y L(XL)+)+Z = S
X,Y,Z

−((XL)−Y L)+Z .
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We obtain in this fashion that

JacobiL(X, Y, Z)

= S
X,Y,Z

(X(LY )+L)+Z − ((XL)−Y L)+Z + (X(LY )−L)+Z − ((XL)+Y L)+Z ,

which after a minor rearrangement is easily seen to vanish. �

We now define a bilinear form on the image of J as follows:

ω(J(X), J(Y )) = (−)|X̄ |+|Ȳ |+ε+1 Str J(X)Y . (4.2.8)

Lemma 4.2.9. ω is s-skewsymmetric.

Proof. This is a simple computation using the definition (4.2.1) of the Adler

map and the isotropy of g±. �

Hence under the identification of J(X) as a vector fields, ω is to be interpreted

as a two-form; only that it is only defined on those vector fields in the image of
J . In fact, if X were the gradient of a function F : g → k, then J(dF ) would be

the hamiltonian vector field associated to the function and ω(J(dF ), J(dG)) =
{F , G} would be the Poisson bracket associated to J . By Lemma 4.2.9 this

bracket is s-skewsymmetric, hence to prove that J is a hamiltonian map, it is
equivalent to prove that this bracket obeys the Jacobi identity. This is in turn

equivalent to the two-form ω defined on Im J being closed. This condition makes
sense precisely because of Lemma 4.2.3.

For X, Y, Z ∈ g homogeneous, we define the exterior derivative of ω as the
following three-form on the image of J :

dω(J(X), J(Y ), J(Z)) = C
X,Y,Z

(
δXω(J(Y ), J(Z))− ω(J([X , Y ]∗L), J(Z))

)
.

(4.2.10)
We now have the following:

Lemma 4.2.11. For any homogeneous functions F,G,H,

dω(J(dF ), J(dG), J(dH)) = − C
dF,dG,dH

{F , {G , H}}
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Proof. Because of (4.2.10), (4.2.8) and the definition of the bracket we have

dω(J(dF ), J(dG), J(dH))

= C
dF,dG,dH

δdF {G , H} − δ[dF , dG]∗L
H

= C
dF,dG,dH

{F , {G , H}} − [δdF , δdG] H

= C
dF,dG,dH

{F , {G , H}} − δdF {G , H}+ (−)|F ||G|δdF {G , H}

= C
dF,dG,dH

{F , {G , H}} − {F , {G , H}}+ (−)|F ||G| {G , {F , H}}

=− C
dF,dG,dH

{F , {G , H}} ,

where we have used that |F | = |d̄F | and the definition of the gradient. �

Before getting into the proof of dω = 0, let us pause for a moment to mention
a curious fact. Suppose that X and Y were independent of L. Then,

ω(J(X), J(Y )) = (−)|X̄ |+|Ȳ |+ε+1 Str J(X)Y

= (−)|X̄ |+|Ȳ |+ε+1 1
2 StrL [X , Y ]∗L , (4.2.12)

which is reminiscent of the Kirillov–Kostant Poisson structure on the dual of a
Lie algebra.

Let us discuss this briefly. Suppose that h is a Lie algebra and h∗ its dual.
This is a linear space whose tangent space can be identified naturally with itself

and its cotangent space with the algebra h. Therefore one can identify one-forms
with elements of the algebra. In particular, if F is any function on h∗, its gradient

dF (L) at a point L ∈ h∗ can be identified with an element of the algebra. The
Kirillov–Kostant bracket of two functions F and G at the point L is defined by

{F , G} (L) ≡ 〈L, [dF , dG]〉 . (4.2.13)

If, as in our case, h has a nondegenerate trace form, we can identify h and h∗,
and then the Kirillov–Kostant bracket (4.2.13) becomes simply

{F , G} (L) = (−)|F |+|G|+ε+1 StrL [dF , dG] , (4.2.14)

which is to be compared with (4.2.12). The Jacobi identity of the bracket (4.2.13)
follows from the Jacobi identity for the Lie bracket in h. Of course, we do not

quite have the Lie bracket in h but rather a modified bracket which nevertheless
does obey Jacobi. In fact, we can think of our modified bracket as the linearized

Poisson bracket at the point L. Either from this analogy or from our experience
with Poisson manifolds, we should expect that the following holds.
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Theorem 4.2.15. For all X, Y, Z, independent of L,

dω(J(X), J(Y ), J(Z)) = 0 . (4.2.16)

Proof. By definition

dω(J(X), J(Y ), J(Z)) = C
X,Y,Z

(−)|X̄ |+|Ȳ |+|Z̄|+ε(Str J([X, Y ]∗L)Z − Str δXJ(Y )Z)

= C
X,Y,Z

(−)|X̄ |+|Z̄|+ε+1+|X̄||Ȳ |δY StrJ(X)Z

= − C
X,Y,Z

(−)|X̄ |+|Z̄|+ε+1+|X̄|(|Ȳ |+|Z̄|)δY StrJ(Z)X

= − C
X,Y,Z

(−)|X̄ |+|Ȳ |+|Z̄|+ε+1 Str δXJ(Y )Z ,

where we have used the antisymmetry of ω. Comparing the first and the last

line we find that

dω(J(X), J(Y ), J(Z)) = C
X,Y,Z

(−)|X̄ |+|Ȳ |+|Z̄|+ε+(|X̄|+|Ȳ |)|Z̄| 1
2 Str J(Z)[X, Y ]

∗
L

= C
X,Y,Z

(−)(|X̄ |+|Ȳ |+|Z̄|)(ε+1) 1
2 Str[X, Y ]

∗
LJ(Z) .

Therefore all we have to prove is that

C
X,Y,Z

Str[X, Y ]∗LJ(Z) = 0 . (4.2.17)

We use now the fact that for all W , Z

StrWJ(Z)

= −1
2(−)ε(|W̄ |+|Z̄|+ε) StrL([W,Z]∗L − (−)|W̄ |εδWZ + (−)|Z̄|ε+|W̄ ||Z̄|δZW ) .

In our case W = [X, Y ]∗L so that δWZ = 0 but not δZW which must be taken

into account. Using Proposition 4.2.7 we rewrite (4.2.17) simply as

C
X,Y,Z

(−)|Z̄ |(|X̄|+|Ȳ |+ε) StrLδZ [X, Y ]
∗
L = 0 , (4.2.18)
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which we proceed to prove.

C
X,Y,Z

(−)|Z̄|(|X̄ |+|Ȳ |+ε) StrLδZ [X, Y ]
∗
L

= S
X,Y,Z

(−)|Z̄|(|X̄ |+|Ȳ |+ε) Str(−)|X||Z̄ |(LX(J(Z)Y )− − L(XJ(Z))+Y )

= S
X,Y,Z

Str [LX((LY )+LZ)− − LX(L(Y L)+Z)− − L(X(LY )+L)+Z

+ L(XL(Y L)+Z)+]

= S
X,Y,Z

Str[(LX)+(LY )+LZ − (LX)+LY LZ + L(XL(Y L)+)+Z]

= S
X,Y,Z

Str[−(LX)+(LY )−LZ + (−)ε(|X|+|Y |+|Z|)XL(Y L)+(ZL)−]

= Str(−LXLY LZ + (−)ε(|X|+|Y |+|Z|)XLY LZL)− (−)|Ȳ ||Z̄|(Y ↔ Z) ,

which clearly vanishes by cyclicity of the trace. �

We mention that in the last step of the above proof we have used the follow-

ing:

Lemma 4.2.19. For any A,B,C ∈ g, C
A,B,C

StrA+B−C = StrABC.

Proof. We expand StrABC by writing each A,B,C explicitly into its + and
− projections. Using the fact that g± are isotropic subalgebras, we find that of

the eight possible terms only six survive. Using the s-cyclicity of the supertrace,
these can be easily seen to rearrange themselves into:

C
A,B,C

StrA+B−C . �

A remark is in order. We could restrict ourselves to X , Y , and Z which do

not depend on L since the above result is a statement at a point. In terms of
Poisson brackets this is simply the fact that the gradient of any function can be

substituted at a point by the gradient of a linear function in the proof of the
Jacobi identity. Had we taken general X , Y , and Z we would have incurred

in terms of the form δXY which again would have been seen to cancel. The
sceptical reader should verify this her/himself.

Finally we mention a corollary of the above theorem. Suppose that g has an
identity element—which represents no loss of generality since every associative

algebra can be augmented to a unital algebra. Then we can deform the Adler

map by shifting L 7→ L+ λ for some scalar λ assumed to be of the same parity
as L. Then we find Jλ(X) = J(X) + λJ∞(X), where

J∞(X) = [L , X ]+ − [L , X+] , (4.2.20)

where in the above graded commutators the parity of X is |X̄|. Then the bracket
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defined by J∞ obeys the Jacobi identity and is, moreover, coordinated to the

bracket coming from the unperturbed Adler map. If we try to write this new
bracket in Kirillov–Kostant form (cf. (4.2.13)) we find that the Lie bracket from

which it arises is
[X , Y ]R ≡ [R(X) , Y ] + [X , R(Y )] , (4.2.21)

where R : g → g is defined by R(X) = X− −X+. It is an easy exercise to verify

that this bracket does indeed satisfy the Jacobi identity. This makes R into a
classical r-matrix. Notice also that this new bracket [− , −]R is (up to a factor

of 2) the one obtained by deforming [− , −]∗L by L 7→ L+ λ.
We can now descend from the abstract into the concrete applications we have

in mind. In particular, we can take g to be the algebra of SΨDO’s with the usual
split into differential and integral operators and the supertrace being given by

the Adler supertrace (4.1.15). Then the Adler map defines a Poisson bracket
at all points L ∈ g; that is, for any SΨDO. Restricting ourselves to different

submanifolds of g—for example, the affine subspacesMn—the Adler map induces
a Poisson bracket in each one. All these spaces have the property that they can be

decomposed as orbits of the formal supergroup associated to the Lie superalgebra
of integral operators. For example, if L ∈ Mn is a superdifferential operator of the

form Dn+
∑n

i=1 UiD
n−i, and if g = 1+

∑∞
i=1BiD

−i is an element of the formal

superVolterra group, gLg−1 ∈ Mn. In fact, if n is even, the orbit is determined
by the invariants U1 and U2; whereas for n odd, both U1 and U2 transform.

As already mentioned, the first Gel’fand–Dickey bracket is simply the Kirillov–
Kostant bracket on the orbit. As we have now seen the second Gel’fand–Dickey

bracket is also of the Kirillov–Kostant type, but with a different Lie bracket. It
is an interesting problem to elucidate this relationship further. In particular, can

this also be understood as a coadjoint orbit of some (formal) group?

4.3. SUPERSYMMETRIC HIERARCHIES OF THE KP TYPE

We saw in Chapter Three that the Lax formalism provides an ideal framework

for studying integrable hierarchies of the KdV type, giving rise to a coherent
and robust edifice. Indeed we saw in Section 3.4 that any generalized n-KdV

hierarchy can be obtained as a reduction of the KP hierarchy by restricting to the
subspace of KP operators whose nth power is purely differential. The dynamics is

described by an infinite number of commuting flows. Each of these hierarchies is
formally integrable in the sense that it possesses an infinite number of conserved

charges in involution with respect to two coordinated Poisson brackets and a
bihamiltonian structure defined via the Adler map. Moreover one can identify

the second Gel’fand–Dickey brackets for every n-KdV hierarchy with the classical
version of the Wn-algebra.
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It seems therefore natural to try follow the same path in our attempt to

define and study supersymmetric generalizations of KdV-type hierarchies. More
precisely, we should define our generic n-sKdV hierarchy starting from a Lax

operator of the form

L = Dn +

n∑

i=1

UiD
n−i . (4.3.1)

In light of our previous discussion we would like to be able to characterize all

these n-sKdV hierarchies as particular reductions of a universal supersymmetric
KP hierarchy, whose Lax operator should be given by the n-th root of (4.3.1).

But, already at this point, we encounter a problem. As shown in [29] every
homogeneous SΨDO of the form L = Dn + U1D

n−1 + · · · has a unique nth root

for odd n, whereas for even n the nth root need not exist or even if it does, it

need not be unique. Nevertheless for homogeneous SΨDO’s of even order, say
L = D2n+U1D

2n−1+· · ·, it was proven in [32] that there exists a unique nth root

L1/n = D2+ · · ·, whose coefficients are differential polynomials in the coefficients
of L. This means that one is forced to treat separately the odd and even order

sKdV hierarchies and hence to consider two supersymmetric KP hierarchies. On
the one hand, we have the supersymmetric KP hierarchy (MRSKP) defined by

Manin and Radul in [29] which will reduce to the odd order sKdV hierarchies;
and on the other hand the even supersymmetric KP hierarchy (SKP2) defined

by Figueroa-O’Farrill, Mas, and Ramos [32], which will reduce to those of even
order. We should remark that the sKdV equation (1.3.3) is not obtained from

the SKP2 hierarchy simply by demanding that some power of the Lax operator
be differential. In fact, the Lax operator corresponding to the sKdV hierarchy

is L = D4 + UD which corresponds to the BSKP2 hierarchy to be defined in
Section 6.3.

One could of course ask whether these are the only supersymmetric exten-

sions that the KP hierarchy admits. The answer to this question is clearly neg-
ative if we consider it in a slightly more general context. If we supersymmetrize

the KP hierarchy (cf. Section 3.4) by considering flows analogous to those in
Proposition 3.4.14 in the superVolterra group one can then construct a hierarchy

which does not possess a standard Lax formulation. This hierarchy is called the

Jacobian SKP hierarchy (JSKP) and it has been introduced by Mulase [33] and
Rabin [34].

the mrskp hierarchy

The MRSKP hierarchy has been introduced by Manin and Radul in [29] as a
supersymmetric extension of the KP hierarchy consisting in an infinite system of

flows for an infinite set of even and odd fields, depending on the space variables
(x, θ) of the (1|1) superspace and on an infinite set of odd and even time variables
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(t1, t2, . . .) and having the KP hierarchy as a natural reduction. In this section

we shall consider some of the basic properties that will prove to be of interest
for us in the sequel.

The MRSKP hierarchy is defined as the universal family of isospectral flows
deforming a SΨDO Λ = D +

∑
i≥1 UiD

1−i, with Ui ∈ R. But in contrast to

the nonsupersymmetric case this infinite family of odd and even flows satisfy a
nonabelian Lie superalgebra whose commutation relations are

[D2i, D2j ] = 0 , [D2i, D2j−1] = 0 , [D2i−1, D2j−1] = −2D2i+2j−2 . (4.3.2)

(We have adopted here the same sign conventions for the time parameters ti as in
[53], [34].) A particular representation of (4.3.2) in terms of an infinite number

of odd and even times {t1, t2, t3, . . .} is given by

D2i =
∂

∂t2i

D2i−1 =
∂

∂t2i−1
−
∑

j≥1

t2j−1
∂

∂t2i+2j−2
, (4.3.3)

where the odd times are odd variables satisfying t2i−1t2j−1 = −t2j−1t2i−1 and
hence t22i−1 = 0. These flows are initially defined on R but one can extend them

on the whole R as evolutionary derivations, that is,

[D2i, D] = [D2i−1, D] = 0 , (4.3.4)

and one can thus write the Lax flows of the MRSKP hierarchy in the following

manner:

D2iΛ = −[Λ2i
− ,Λ] = [Λ2i

+ ,Λ] (4.3.5)

D2i−1Λ = −[Λ2i−1
− ,Λ] = [Λ2i−1

+ ,Λ]− 2Λ2i . (4.3.6)

As a concrete example, let us write down the first flow D1 for a few fields:

D1U1 = −2U2

D1U2 = −U ′
2

D1U3 = −U ′
3 − 2U4 − 2U2

2 − U2U
′
1 .

(4.3.7)

The fact that MRSKP admits a Lax formulation is doubtlessly a remarkable
feature that proves to be very important in applications. This seems to be

connected to what may be seen as a drawback, namely the fact that the algebra
of flows is no longer abelian. Indeed, one can redefine the odd flows in such a

way that they (anti)commute, but at the the price of the flows not being strictly
of Lax form, but explicitly dependent on the time parameters.
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The initial value problem associated to the MRSKP hierarchy has been

proven [53] to be uniquely solvable. Nevertheless, its complete integrability as a
dynamical system is far from being obvious. One can proceed by analogy with

the nonsupersymmetric case and write down an infinite number of conserved
charges

Hn =
1

n
Str Λn for all n ∈ N ; (4.3.8)

but as one can easily see, for n = 2k, Λ2k = 1
2

[
Λk , Λk

]
and H2k is trivial since

the supertrace annihilates (graded) commutators. Hence the first problem that

arises is to find out whether there exist even conserved charges. To the best of
my knowledge this is still an open problem, although as a systematic search at

low degree seems to indicate that there are no local even conserved charges [54].

This brings us to the major open problem concerning MRSKP, namely the
existence of a hamiltonian structure. Here too, since the original attempt of

Manin and Radul of writing the even flows of the hierarchy in a form reminis-

cent of the first Gel’fand–Dickey bracket (by using exactly the nontrivial odd
supercharges) not much progress has been made.

the SKP2 hierarchy

The SKP2 hierarchy was introduced in [32] as a supersymmetric general-
ization of the KP hierarchy, out of which all even order sKdV hierarchies could

be obtained by reduction. As shown in that paper, SKP2 possesses an infinite
set of commuting even flows and all its sKdV-like reductions are integrable and

bihamiltonian. The bihamiltonian integrability of the unreduced hierarchy, al-

though implicit in [32], was proven by Yu in [55].

Given a generic even order sKdV hierarchy, the introduction of SKP2 is
prompted by the following simple fact. Any even order supersymmetric Lax

operator L = D2k +
∑2k

i=1 UiD
2k−i, will satisfy a Lax-type evolution equation of

the form
∂L

∂t
= [P , L] , (4.3.9)

if and only if

∂L1/k

∂t
=
[
P , L1/k

]
. (4.3.10)

Therefore we are led—analogously to the nonsupersymmetric case—to the study
of the hierarchy based on the general supersymmetric Lax operator L = D2 +∑∞

i=1 UiD
2−i. Then by imposing the constraint (Lk)− = 0 we will obtain—

perhaps after imposing further constraints—all the even-order sKdV hierarchies.

The discussion of this even order SKP hierarchy can be made following closely
the nonsupersymmetric case of the KP hierarchy. Indeed the space ΩL of SDOP’s
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P for which the equation
∂L

∂t
= [P , L] (4.3.11)

is a consistent (local) evolution equation can be related to the space ZL of SΨDO’s
commuting with L, namely if M ∈ ZL then M+ ∈ ΩL. ZL on the other hand, as

a vector space over the constants, is spanned by the powers Ln, for n ∈ Z. From
this one can immediately characterize ΩL in the following fashion. The most

general element of ΩL is given by a linear combination with constant coefficients
of Ln

+, for n ∈ N and by any superdifferential operator of the form fD2+gD+h,

where h is an arbitrary differential polynomial of L and f and g are differential
polynomials of L subject to the condition

f ′′ + U1f
′ + 2gU1 = 0 , (4.3.12)

where U1 is the coefficient of D in L.
Thus, we have an infinite number of even flows ∂nL =

[
Ln
+ , L

]
and one can

easily check that they commute with each other. We can therefore introduce an

infinite number of ‘time’ variables tn for n ∈ N and define the following flows
associated to them:

∂L

∂tn
=
[
Ln
+ , L

]
. (4.3.13)

The first few equations that one obtains by explicitly computing the first flow
on the first, say, four fields read:

∂U1

∂t1
= 0

∂U2

∂t1
= 2U3U1

∂U3

∂t1
= U ′′

3 + U ′
3U1 − U3U

′
1

∂U4

∂t1
= U ′′

4 + 2U5U1 − U ′
4U1 − U3U

′′
1 − U3U

′
2 .

(4.3.14)

The SKP2 hierarchy has an infinite number of nontrivial independent poly-
nomial conserved quantities. Indeed define

Hn = 1
n StrLn for n ∈ N . (4.3.15)

They are obviously integrals of polynomial densities and moreover one can actu-
ally prove that they are nontrivial and independent. Thus they form an infinite

set of even (under the Z2-grading) conserved charges for SKP2. Hence SKP2 is
formally completely integrable.
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the jskp hierarchy

Since there is no unique supersymmetric extension of the KP hierarchy one

could of course ask what distinguishes the different supersymmetric KP hierar-
chies or which one of them is a more natural generalization of the KP hierarchy.

We have previously argued that the MRSKP hierarchy has the advantage of
possessing a standard Lax formulation. Nevertheless, from a geometrical point

of view, it is not the MRSKP hierarchy the one that seems the most natural
supersymmetric generalization of the KP hierarchy. The flows of these KP-type

hierarchies have a fascinating geometric interpretation [34][33].

Morally speaking, one can understand this as follows. The spectrum of any

reasonable operator on a compact manifold is discrete. By duality, one expects
that if an operator is defined on a discrete set (say, a point) its spectrum would

be a compact manifold. Now, if L is a Lax operator for a KdV-type hierarchy, its
components are taken to be formal power series and hence will generically have

zero radius of convergence. In other words, we can think of it as being defined
on a point. It turns out that its spectrum can be thought of some Riemann

surface Σ. The Lax flows, being isospectral, preserve this Riemann surface and
in fact can be understood as deformations of holomorphic line bundles over Σ. By

continuity, the flows must preserve the topology of the bundle but not necessarily
the holomorphic structure. In other words, the KdV-type equations can be

understood as flows on the moduli space of (flat) holomorphic line bundles over
Σ; in other words, the Jacobian variety of Σ. According to the geometric analysis

of Rabin [34], one cannot understand the MRSKP flows in exactly this fashion.
In other words, the MRSKP flows do not just deform line bundles over a fixed

superRiemann surface, but actually deform the superanalytic structure of the

superRiemman surface itself. The flows are not generic though: they are such
that the hierarchy remains integrable. If we insist in having strictly Jacobian

flows—that is, preserving the superRiemman surface—one is forced to introduce
a different hierarchy: the Jacobian SKP hierarchy (JSKP) of Mulase [33] and

Rabin [34]. This hierarchy seems to provide the the closest geometric analog of
the KP hierarchy in the supersymmetric case since its flows are defined on the

supersymmetric Jacobian variety of an algebraic supercurve.

To define the Jacobian SKP hierarchy it is necessary to abandon momentarily

the Lax form for the evolution equations. Instead, it is convenient to mimic the
treatment of the last subsection of Section 3.4 on dressing transformations and

try to write a natural set of flows in the superVolterra group.

Let us first consider the MRSKP hierarchy in this light. As shown in [29],
the necessary and sufficient condition for the existence of an even SΨDO, φ =

1 +
∑

i≥1 ViD
−i, with Vi ∈ R, such that Λ = φDφ−1 is U

[1]
1 + 2U2 = 0. If

we restrict ourselves to such Λ’s then we can alternatively define the MRSKP
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hierarchy as the family of flows on the dressing operator φ

Diφ = −
(
φDiφ−1

)
−
φ , (4.3.16)

or equivalently

∂φ

∂t2i
= −

(
φD2iφ−1

)
−
φ

∂φ

∂t2i−1
= −

(
φ
(
D2i−1 +

∑
j≥1

t2j−1D
2i+2j−2

)
φ−1

)

−
φ . (4.3.17)

One can prove that provided Λ is dressable, the two definitions of the MRSKP
hierarchy are indeed equivalent. First of all it is obvious that given the flows on

the dressing operator (4.3.16) one obtains the Lax flows on Λ:

DiΛ = Di

(
φDφ−1

)

= −
(
φDiφ−1

)
−
φDφ−1 + (−)iφDφ−1

(
φDiφ−1

)
−

= −[Λi
−,Λ] . (4.3.18)

In order to prove the converse let us introduce the dressed version of Λ in the
Lax flows and rewrite them in the following form

(
Diφ+

(
φDiφ−1

)
−
φ
)
Dφ−1 − (−)iφDφ−1

(
Diφ+

(
φDiφ−1

)
−
φ
)
φ−1 = 0 .

(4.3.19)
Suppose now that Diφ +

(
φDiφ−1

)
−
φ = AND

N + AN−1D
N−1 + . . ., for some

arbitrary N . Then one obtains the following conditions for the leading coeffi-
cients:

AN = 0 for N odd,

and
2AN−1 − (−)nA′

N − (−)n2V1AN = 0
A′
N−1 + 2V1AN−1 − (−)nV ′

1AN = 0

}
for N even. (4.3.20)

That is, in both cases we obtain that—provided we drop the constants—the
leading coefficient AN must vanish and hence (4.3.16) is satisfied.

Notice that one can dress the following obvious commutation relations

[D2i −D2i, D] = 0 (4.3.21)

[D2i−1 −D2i−1, D] = −2D2i (4.3.22)

and obtain the Lax flows (4.3.5) and (4.3.6).
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We can now define the JSKP hierarchy as the infinite family of odd and even

commuting flows on the superVolterra group given by

∂φ

∂t2i
= −

(
φ∂iφ−1

)
−
φ

∂φ

∂t2i+1
= −

(
φ∂i∂θφ

−1
)
−
φ , (4.3.23)

where φ = 1+
∑

≥1 ViD
−i and {t1, t2, t3, . . .} is the same infinite set of odd and

even times as in the case of the MRSKP hierarchy. One can easily work out the

first few equations, for the first few fields:

∂V1
∂t1

= V1,θ

∂V2
∂t1

= V2,θ + V1V2 − V3

∂V3
∂t1

= V3,θ + V1V3 ,

(4.3.24)

where Vi,θ = (∂θVi).

Clearly, the even flows of JSKP coincide with the even flows of MRSKP
being actually nothing but the original KP system. On the other hand, since

φ∂θ 6= ∂θφ, it seems there is no simple way of writing the odd flows in terms of a
Lax operator L = φDφ−1; in other words, the JSKP hierarchy (or more precisely

its odd part) does not have a Lax representation in terms of fractional powers of
L. We can nevertheless write the JSKP flows in a Lax form (3.3.5) by defining

L ≡ φ∂φ−1 and M = φ∂θφ
−1, in terms of which the flows can be written as

follows:

∂L

∂t2i
= −

[
Li
− , L

]
and

∂L

∂t2i+1
= −

[
(LiM)− , L

]
. (4.3.25)

Then the trivial commutation relations which give upon dressing the flows of the

hierarchy in the Lax form read

[D2i − ∂i, ∂] = 0

[D2i+1 − ∂i∂θ, ∂] = 0 . (4.3.26)



Chapter Five

ADDITIONAL SYMMETRIES

The notion of integrability is intimately linked to the notion of symmetry.
The idea that a group of symmetries acting on phase space can be used to

solve a dynamical system goes back to Jacobi and Laplace and the method
of ‘elimination of nodes.’ We are all familiar with the fact that the two-body

problem reduces down to a one-body problem relative to the center of mass.
In general, when a group of symmetries acts on a phase space in such a way

that the Poisson brackets are preserved, there is a well-defined procedure (called
hamiltonian reduction) by which to construct a lower-dimensional phase space.

If in addition the symmetries preserve the dynamics, then these can be effectively
described in the reduced phase space. It is not hard to show that a system is

completely integrable if and only if it can be reduced in this fashion down to a
trivial phase space consisting of isolated points. Liouville’s theorem on complete

integrability can be understood in precisely this fashion. Given a set of conserved

quantities in involution, their flows give rise to an action of (some quotient of)
the affine group. The resulting hamiltonian reduction yields a phase space that

in the best of cases consists of only one point. When the motion is quasi-periodic,
this is the essence of the Kolmogorov-Arnold-Moser theorem on invariant tori.

The coordinates on the tori are the angle variables and the action variables are
canonically conjugate ones which are functions of the conserved charges and the

hamiltonian.

Given an integrable evolution equation generated by some hamiltonian, the
flows generated by the conserved charges in involution are dynamical symme-

tries. Since these symmetries are sufficient to reduce the phase space down to
a discrete set of points, one may naively think that one cannot find other con-

tinuous symmetries. In particular, for the KdV-type hierarchies introduced in

Chapter Three, we classified all the possible Lax flows and they turned out to
generate the flows of the hierarchy. One would then not expect that there should

exist any ‘additional’ symmetries of Lax type. It thus came as some surprise
when Orlov and Schulman [56] in 1986 discovered an infinite set of additional

symmetries for the KP equation which can be written in Lax form. The catch
was that these symmetries are explicitly time-dependent.

In this chapter we review from a different perspective the additional sym-

metries of the KP hierarchy and then turn our attention to the determination
of the additional symmetries for the supersymmetric extensions discussed in the

66
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previous Chapter. For the KP case we will follow the treatment in [57] which

exploits a representation of the algebra of differential operators on the Volterra
group. This action is analogous to the map defined by Radul from the algebra

of differential operators on the space of Lax operators of the KdV-hierarchies,
hence we discuss this map briefly below. In Section 1, we also determine the

additional symmetries of the KP hierarchy and show that they are isomorphic
to W∞ following [57]. In Section 2 we study the additional symmetries of three

supersymmetric extensions of the KP hierarchy: MRSKP, SKP2, and JSKP us-
ing a supersymmetric variant of the Radul map. The work in this second part is

contained in my paper [52].

5.1. ADDITIONAL SYMMETRIES OF THE KP HIERARCHY

the radul map

The aim of this section is to introduce the Radul map. This will provide

us with an elegant framework in which to define the additional flows of KP and
make transparent W∞ as the algebra of additional symmetries of this hierarchy.

The context in which the Radul map appeared for the first time is neverthe-
less slightly different. Its original motivation lies in the general frame of attempts

to understand the W-symmetry, in particular by trying to relate W-algebras to

algebraic structures that are better understood. One method to investigate how
a class of algebras fits within other algebraic structures is to try and establish

maps (morphisms) between its objects and other well-known objects. In the
case of W-algebras, examples of such maps are the Miura transformation [15],

the (generalized) Drinfel’d–Sokolov reduction [17], and the Radul map [58].
This last one is a Lie algebra homomorphism from the differential operators on

the circle to the algebra of vector fields on the space of Lax operators, some of
which generate W-transformations.

Consider the subring R+ of differential operators on the circle and give it

a Lie algebra structure by the commutator. We call the resulting Lie algebra
DOP. We follow the notation in Chapter Three, and we let M denote the space

of ΨDO’s for the form ∂+
∑

i≥1 ui∂
1−i. Taking n = 1 we are in the space of Lax

operators for the KP hierarchy, whereas taking ui>n = 0 we are in the space of

Lax operators of the n-KdV hierarchy.
The Radul map W : DOP → TLM is defined by

W (E) = (LEL−1)−L = LE − (LEL−1)+L . (5.1.1)

On TLM we can define a Lie bracket as in (3.1.8). Let us recall this. Every
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A ∈ TLM of the above form defines a vector field ∂A by

∂A =
∞∑

i=1

∞∑

k=0

a
(k)
i

∂

∂u
(k)
i

. (5.1.2)

In particular, ∂AL = A. We then define the Lie bracket [[A,B]] of two vectors
A,B ∈ TLM by

∂[[A,B]] = [∂A , ∂B] ; (5.1.3)

or equivalently
[[A,B]] = ∂AB − ∂BA . (5.1.4)

Notice that this is not the ordinary commutator in DOP.

Theorem 5.1.5. The Radul map is a Lie algebra isomorphism

[[W (E),W (F )]] =W ([E , F ]c) , (5.1.6)

where the modified bracket on DOP is defined by

[E , F ]c ≡ ∂W (E)F − ∂W (F )E + [E , F ] . (5.1.7)

(For a proof in the more general case of generalized pseudodifferential oper-

ators see [57].)
The image of the generalized Adler map is a subalgebra of TLM, and this

allows us to pull back the bracket [[−,−]] on TLM to a bracket [− , −]∗L on T ∗
LM

defined by requiring that the Adler map be a homomorphism. Explicitly, for

X, Y ∈ T ∗
LM, we have

[[J(X), J(Y )]] = J([X , Y ]∗L) , (5.1.8)

where

[X , Y ]∗L = ∂J(X)Y +X(LY )− − (XL)+Y − (X ↔ Y ) . (5.1.9)

Moreover there exists a Lie algebra homomorphism R : DOP → T ∗
LM defined

by R(E) = −EL−1 mod ∂−nR−, which means that

[R(E) , R(F )]∗L = R([E , F ]c) , (5.1.10)

or, in other words, the following diagram is commutative

T ∗
LM

R ր
yJ

DOP
W
−→ TLM

Let us now consider the immediate application of the homomorphism prop-
erty of the Radul map to the identification originally due to Aoyama and Kodama
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in [59] of W∞ as the algebra of additional symmetries of the KP hierarchy.

additional symmetries

As we have seen in Section 3.4, the KP hierarchy is defined as the universal

family of isospectral deformations of a pseudodifferential operator Λ of the form

(3.4.1). The evolution of Λ is specified by the commuting family of flows ∂i given
by (3.4.7). If one restricts oneself to operators satisfying a1 = 0, then we saw

that one can lift the KP flows to the Volterra group G. The Volterra group acts
naturally via dressing transformations L 7→ φ−1Lφ, where φ = 1+

∑
i≥1wi∂

−i ∈

G is the dressing operator. In terms of the dressing operator, the flows of the
KP hierarchy are given by Proposition 3.4.14.

One can write these flows in a different way by using an analogue of the Radul
map [58]. The similarity between the expression for the Radul map (5.1.1) and

the one of the KP flows given by Proposition 3.4.14 suggests us to define a map

W ′(E) = (φEφ−1)−φ , (5.1.11)

from DOP to the Lie algebra R− of the Volterra group. The KP flows become
now ∂nφ = −W ′(∂n) = −∂W ′(∂n)φ, where ∂W ′(∂n) is then a flow on the Volterra

group. The map (5.1.11) now translates the trivial fact [∂n, ∂m] = 0 into the
commutativity of the flows [∂n, ∂m] = 0. This allows us to represent the flows in

terms of an infinite set of times, ∂i =
∂
∂ti

, with i = 1, 2, . . .. One interpretation of
this feature is that every flow possesses an infinite number of symmetries given

by the other flows. This interpretation begs the question whether these are all
or, if on the contrary, there exist additional symmetries. Remarkably enough,

it turns out that one can construct a larger family of times-dependent flows
which contains as a subset the original KP flows and commute with them. This

new family of flows satisfies a nonabelian algebra with respect to which the KP
hierarchy forms its center. Thus we adopt here the following definition.

Definition 5.1.12. By (additional) symmetries of an integrable hierarchy of
flows, we mean its centralizer in the algebra of times-dependent vector fields.

The fact that these symmetries contain the original hierarchy, although

largely taken for granted, is only true provided the flows of the hierarchy them-
selves satisfy an abelian algebra; and it is to these cases that the word ‘additional’

can be applied. We will see in fact that this is not generally the case for super-
symmetric hierarchies.

Along with Definition 5.1.12, it is in practice convenient to have a ‘work-
ing definition’ that is more suitable for computation. Our working definition
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is motivated by the following fact. The flows ∂W ′(Γ) generated via (5.1.11) by

differential operators Γ satisfying

[∂i − ∂i,Γ] = 0 (5.1.13)

commute with the KP flows. Indeed following [57] we have that

[∂W ′(Γ), ∂i] = −[∂W ′(Γ), ∂W ′(∂i)]

= −∂W ′([Γ,∂i]φ) , (5.1.14)

where [Γ, ∂i]φ is a modified Lie bracket analogous to (5.1.7). This particular

bracket is given by

[Γ, ∂i]φ = ∂W ′(Γ)∂
i − ∂W ′(∂i)Γ + [Γ, ∂i]

= [∂i,Γ] + [Γ, ∂i]

= [∂i − ∂i,Γ]

= 0 . (5.1.15)

We therefore call ‘additional symmetries’ the flows generated by operators Γ
subject to (5.1.13). It is conceivable that (5.1.13) is also a necessary condition—

that is, that all additional symmetries arise in this fashion; but we shall not
attempt to prove it here.

This means that looking for the additional symmetries comes down to trying
to find solutions for (5.1.13). An obvious solution to this equation is simply Γ =

∂, which, introduced in (5.1.13) and after applying a dressing transformation,
gives precisely the KP flows in Proposition 3.4.14. This agrees with the fact that

the KP flows commute with each other.

A more interesting solution can be obtained if we allow for an explicit depen-

dence on the time parameters of the hierarchy; that is, if we extend our ring of
functions by the infinite set of independent variables {t1, t2, . . .}, in which case

we have to extend the derivative operator ∂ as a derivation in this new ring.

A priori, since x and all the ti are independent variables of our infinite set

of partial differential equations, we can automatically conclude that ∂ has to be
extended trivially to the new ring. Nevertheless in the case KP, since the first

flow (for dressable L) reads ∂1L = [L+, L] = [∂, L] and therefore gives ∂ = ∂1,
one can identify x with t1. One can then define (see, for instance, [40]) a formal

infinite-order differential operator

Γ =
∑

j≥1

jtj∂
j−1 , (5.1.16)
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which satisfies (5.1.13), and from it a two-parameter family of flows

∂m,kφ =
(
φΓk∂mφ−1

)
−
φ , (5.1.17)

that satisfy [∂m,k, ∂n] = 0. Notice that for k = 0 and m > 0 they agree with the
KP flows. Moreover since [∂,Γ] = 1 it follows that the Lie algebra generated by

Γk∂m, k ≥ 0 and m ∈ Z is isomorphic (as a Lie algebra) to W1+∞ and hence the
algebra of additional symmetries is nothing but W∞. This was proven in [59] by

a direct computation in modes, but the proof using the Radul-like map is more
conceptual.

One can alternatively write the two-parameter family of flows in a Lax form

∂m,kL = −[(MkLm)−, L] ,

where M = φΓφ−1 is the dressed version of Γ.
Although realized here without it, W∞ has a natural central extension given,

as a subalgebra of DOP, by the Khesin–Kravchenko [60] logarithmic cocycle. In
the KP context, the central extension appears when acting on the τ -functions—

equivalently, when we realize W∞ as free fermion bilinears in a two-dimensional
conformal field theory.

5.2. ADDITIONAL SYMMETRIES OF SKP HIERARCHIES

the supersymmetric radul map

In this section we shall introduce a supersymmetric generalization of the

Radul map and we shall see that it defines a Lie algebra homomorphism between
the space of SDOP’s and TLM. In order to do this we have first of all to define a

Lie (super)algebra structure on TLM. Of course, since the elements of TLM are
in particular SΨDO’s of order at most n− 1 one always has the obvious bracket

given by the graded commutator. Still this is not the one that will allow us to
exhibit the supersymmetric Radul map as a Lie algebra homomorphism. Instead

let us consider the natural Lie bracket on vector fields on M, namely

[DA, DB] = DADB − (−)|DA||DB |DBDA . (5.2.1)

This will induce in TLM a bracket [[−,−]] by

[DA, DB] = D[[A,B]] , (5.2.2)

whose explicit form we shall obtain now.
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Lemma 5.2.3. The Lie bracket [[−,−]] in TLM is given by

[[A,B]] = DAB − (−)|DA||DB |DBA , (5.2.4)

for any two SΨDO’s A and B in TLM.

Proof. Consider f an arbitrary function in SL. Then

[DA, DB] f =
(
DADB − (−)|DA||DB |DBDA

)
f , (5.2.5)

which using the fact that DAf
[k] = (−)k|DA| (DAf)

[k] (which follows by repeated
application of (4.1.20)) becomes

[DA, DB] f =
∞∑

i,j=1

∞∑

k,l=0


(−)k|DB |+(l+k)|DA|A

[l]
j

∂Bi

∂U
[k]
j

−(−)|DA||DB |+k|DA|+(l+k)|DB |B
[l]
j

∂Ai

∂U
[l]
j




[k]

∂f

∂U
[k]
i

=

∞∑

i=1

∞∑

k=0

(−)k(|DA|+|DB |)[[A,B]]
[k]
i

∂f

∂U
[k]
i

, (5.2.6)

where

[[A,B]]i =

∞∑

j=1

∞∑

l=0

(−)l|DA|A
[l]
j

∂Bi

∂U
[k]
j

− (−)|DA||DB |+l|DB |B
[l]
j

∂Ai

∂U
[l]
j

, (5.2.7)

and we get indeed (5.2.4). �

As we saw in Chapter Four one can pull the Lie bracket [[−,−]] on TLM back
to T ∗

LM via the Adler map J(X) = (LX)+L−L(XL)+. In other words one can

define a bracket [−,−]∗L on T ∗
LM such that

[[J(X), J(Y )]] = J([X, Y ]∗L) . (5.2.8)

Computing [X, Y ]∗L one finds [51]

[X, Y ]∗L =(−)n(n+|X|)DJ(X)Y +X(LY )−

− ((XL)+Y )− − (−)(n+|X|)(n+|Y |)(X ↔ Y ) . (5.2.9)

This already tells us that the Adler map is a Lie (super)algebra homomorphism

mapping the cotangent space to the tangent space of M at L, each of them being
considered with the corresponding Lie algebra structure.
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Now we can finally define the supersymmetric analog of the Radul map

W : SDOP → TLM (5.2.10)

sending any E ∈ SDOP to the tangent vector W (E) defined by

W (E) ≡ LE − (LEL−1)+L = (LEL−1)−L . (5.2.11)

Theorem 5.2.12. The supersymmetric Radul map is a Lie (super)algebra
homomorphism, i.e.,

[[W (E),W (F )]] =W ([E, F ]L) , (5.2.13)

where [E, F ]L is the modified Lie bracket on SDOP given by

[E, F ]L = [E, F ] + (−)n|E|DW (E)F − (−)|E||F |+n|F |DW (F )E . (5.2.14)

Proof. By direct computation in the right hand side we have

[[W (E),W (F )]] ≡ DW (E)W (F )− (−)|DW (E)||DW (F )|DW (F )W (E)

= DW (E)(LFL
−1)−L− (−)|DW (E)||DW (F )|(E ↔ F )

= (W (E)FL−1)−L+ (−)n|DW (E)|(LDW (E)FL
−1)−L

− (−)|F ||DW (E)|(LFL−1W (E)L−1)−L

+ (−)|F ||DW (E)|(LFL−1)−W (E)− (−)|DW (E)||DW (F )|(E ↔ F )

= ((LEL−1)−LFL
−1)−L+ (−)|E||F |((LFL−1)−LEL

−1)−L

− (−)|E||F |(LFEL−1)−L+ (−)n|E|(LDW (E)FL
−1)−L

− (−)|DW (E)||DW (F )|(E ↔ F )

= (L[E, F ]L−1)−L+ (−)n|E|(LDW (E)FL
−1)−L

− (−)|F |(n+|E|)(LDW (F )EL
−1)−L

=W ([E, F ]L) , (5.2.15)

which proves the theorem. �

Notice that in the case where E and F are independent of L we recover the

usual Lie bracket on SDOP.
We have in this moment the following diagram where both maps W and J

have been proven to be Lie algebra homomorphisms:

T ∗
LMyJ

SDOP
W
−→ TLM

It would be thus interesting to see whether one can complete this diagram with
a homomorphism R such that J ◦R = W .
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We consider therefore the map R : SDOP → T ∗
LM defined by

R(E) = −(EL−1)− mod D−nS− , (5.2.16)

for any E in SDOP. Since D−nS− ⊆ ker J we have that indeed

J ◦R(E) = W (E) , (5.2.17)

for any E in SDOP and therefore J ◦R = W .

Theorem 5.2.18. R is a Lie algebra homomorphism, with

[R(E), R(F )]∗L = R([E, F ]L) . (5.2.19)

Proof. Using the fact that J ◦R = W and that |R(E)| = |E|+ n we have

[R(E), R(F )]∗L = − (−)n|E|DW (E)(FL
−1)− + (EL−1)−(L(FL

−1)−)−

− (((EL−1)−L)+(FL
−1)−)− − (−)|E||F |(E ↔ F )

= − (−)n|E|(DW (E)FL
−1)− + (−)|E||F |(FL−1W (E)L−1)−

+ (EL−1)−(LFL
−1)− − (E(FL−1)−)−

+ ((EL−1)+L(FL
−1)−)− − (−)|E||F |(E ↔ F )

= − ([E, F ]L−1)− − (−)n|E|(DW (E)FL
−1)−

+ (−)n|F |+|E||F |(DW (F )EL
−1)−

= R([E, F ]L) . (5.2.20)

�

Corollary 5.2.21. We have the following commutative diagram of Lie alge-
bras:

T ∗
LM

R ր
yJ

SDOP
W
−→ TLM

�

the mrskp hierarchy

We shall start in this section the study of the additional symmetries of su-

persymmetric KP hierarchies by considering the supersymmetric extension of
KP defined by Manin and Radul in [29], the MRSKP hierarchy. The additional

symmetries of this particular hierarchy have been studied also in [61] and we
find agreement with their results.
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The flows (4.3.16) are reminiscent of the supersymmetric Radul map (where

in this case n = 1) and suggest us to define a map W ′ : SDOP → S− by

W ′(E) =
(
φEφ−1

)
−
φ , (5.2.22)

for any SDOP E such that Dnφ = −W ′(Dn) = −DW ′(Dn)φ, where DW ′(Dn) is

a flow on the superVolterra group. The algebra of flows of MRSKP becomes in
light of this definition a simple consequence of Theorem 5.2.12.

Proposition 5.2.23. The MRSKP flows satisfy the Lie superalgebra given in
(4.3.2).

Proof. Following step by step the proof of Theorem 5.2.12 and replacing L

with φ we have that

[DW ′(E), DW ′(F )] = DW ′([E,F ]φ) . (5.2.24)

Applying this to our MRSKP flows we get for instance

[D2i−1, D2j−1] = [DW ′(D2i−1), DW ′(D2j−1)]

= DW ′(2D2i+2j−2)

= −2D2i+2j−2 . (5.2.25)

One can in a similar way check that all the other commutators in (4.3.2) do

indeed vanish. �

After these general considerations concerning the MRSKP hierarchy we are
now prepared to tackle the problem of finding its (additional) symmetries. We

have seen that in the case of KP one defines a larger family of flows (i.e., contain-
ing the KP flows) which satisfy an algebra whose center is the KP hierarchy itself.

Here the situation will turn out to be slightly different since the MRSKP flows
themselves do not commute with each other but rather they obey the nonabelian

(super)algebra (4.3.2).

Definition 5.2.26. We call (additional) symmetries of the MRSKP hierarchy

the centralizer of the algebra (4.3.2) of flows of MRSKP in the algebra of times-
dependent vector fields on M.

Analogous to the nonsupersymmetric case, one way to look for additional
symmetries is to look for operators Γ satisfying

[Di −Di,Γ] = 0 . (5.2.27)

The additional flow associated to Γ is then obtained via the supersymmetric
Radul map and is given by DW ′(Γ).
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One obvious solution is Γ = ∂, the even derivation on the ring S and the

generator (via the Radul map) of the even flows of the hierarchy. Notice nev-
ertheless that the odd derivation D—the generator of the odd flows—does not

obey (5.2.27) but for even i. One is therefore forced to conclude that only the
even flows are actually symmetries of the hierarchy, this being the most striking

distinction from the nonsupersymmetric case. Apart from this ‘trivial’ solution,
one can of course ask whether there also exist times-dependent symmetries of

the MRSKP hierarchy. The answer to this question is the object of the following
lemma.

Lemma 5.2.28. Let S[ti] be the extension ring of S by the time variables {ti}
and let

Γ0 = x+ 1
2

∑

j≥1

jt2jD
j−2 − 1

2

∑

j≥1

t2j−1∂
j−2Q + 1

2

∑

i,j≥1

(i− j)t2i−1t2j−1∂
i+j−2 ,

Γ1 = θ +
∑

j≥1

t2j−1∂
j−1

where Q = ∂θ − θ∂, be formal infinite order (super)differential operators in
S[ti][[D]] of Z2-degrees |Γ0| = 0, |Γ1| = 1. These operators enjoy the following
properties:

a) [Di −Di,Γ0] = 0, [Di −Di,Γ1] = 0, and [Di −Di, Q] = 0 for any i ≥ 1;
b) [Q,Γ1] = 1, [Q,Γ0] = −Γ1, [∂,Γ0] = 1;

c) [Γ0,Γ1] = 0, [Γ1,Γ1] = 0, [Γ0,Γ0] = 0. �

Proof. There is one point that ought to be mentioned here, concerning the

extension of the derivations ∂ and D to the ring S[ti]. We recall that in the case
of the KP hierarchy the first even time could be identified with x because of the

first flow which read ∂1 = ∂. Here, although the first even flow tells us again
that D2 = ∂, things turn out to be different. Indeed D cannot be (analogously

to ∂) identified with D1, as one can easily convince oneself by writing down the
first odd flow. We are therefore forced to proceed safely and do not identify x

with t2, but rather keep them as independent variables and extend trivially the

action of ∂ and D to the ring S[ti]. �

We can now define the ‘additional’ flows of the MRSKP hierarchy as the
following four-parameter family of odd and even flows

Dm,k,l,pφ =W ′(Γk
0Γ

l
1Q

p∂m) , (5.2.29)

with k ≥ 0, l = 0, 1, p = 0, 1 and m ∈ Z, where the even MRSKP flows can be
obtained as a particular case, namely Dm,0,0,0 = −D2m for m > 0.
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Theorem 5.2.30. The additional flows are symmetries of the MRSKP hier-
archy, that is they commute with the MRSKP flows:

[Di, Dm,k,l,p] = 0 . (5.2.31)

Proof. Using the expression of the flows in terms of the supersymmetric Radul
map and Theorem 5.2.12 we have that [Di, Dm,k,l,p] = DW ′(−[Di,Γk

0Γ
l
1Q

p∂m]φ), with

[Di,Γk
0Γ

l
1Q

p∂m]φ = DW ′(Di)Γ
k
0Γ

l
1Q

p∂m − (−)i(l+p)DW ′(Γk
0Γ

l
1Q

p∂m)D
i

+ [Di,Γk
0Γ

l
1Q

p∂m]

= −[Di −Di,Γk
0Γ

l
1Q

p∂m] , (5.2.32)

which using Lemma 5.2.28 gives us the announced result. �

Corollary 5.2.33. The algebra of additional symmetries of the MRSKP hi-
erarchy given by (5.2.29) is isomorphic to the Lie algebra of SDOP, which is

isomorphic (as a Lie algebra) to SW1+∞.

Proof. Indeed, the isomorphism is given by

z 7→ −∂ , ξ 7→ Q+ Γ1∂

∂z 7→ Γ0 , ∂ξ 7→ Γ1 . (5.2.34)

The isomorphism between SDOP and SW1+∞ is standard (see, e.g., [62]). �

The fact that we have introduced the generator Q of supertranslations may

seem unsatisfactory to the purist, given that the MRSKP hierarchy is only de-
fined in terms of abstract derivations Di and D. One could therefore ask whether

it is really necessary to break manifest supersymmetric covariance in this fashion

instead of trying to construct another even generator Γ̃0 that would behave like
x and that would satisfy [Di − Di, Γ̃0] = 0, [D, Γ̃0] = Γ1, and [∂, Γ̃0] = 1. This

turns out to be impossible, essentially because D itself is not a symmetry of the
hierarchy. Indeed, an explicit calculation shows that

[D2i−1 −D2i−1,Γ1] = [D2i−1 −D2i−1, [D, Γ̃0]]

= −2[∂i, Γ̃0]

= −2i∂i−1 , (5.2.35)

which is different from zero and which thus contradicts the theorem. Hence

such an operator Γ̃0 cannot exist. One could nevertheless insist that the very
definition of (additional) symmetry is not appropriate. Namely, one could argue

that by the very nature of an integrable hierarchy, every flow of MRSKP should
be thought of as a symmetry of all its other flows. In other words one should
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include D too as a generator of the additional symmetries. This would of course

require redefining the additional symmetries by adding to the previously found
flows (5.2.29) the actual flows of the hierarchy. One could even go further and

claim that once we allowed for the odd flows of the hierarchy to be part of
the additional symmetries, what we have done is really to relax the condition

(5.2.27) in order to include (4.3.22) as a particular case. But then consistency
would force us to also look for possible times-dependent solutions of (5.2.27)

where the right hand side would be proportional with an appropriate power of
∂. If one carries on this computation one finds for instance a whole family of

odd operators Γ1 = θ +
∑

j≥1 ajt2j−1∂
j−1 satisfying

[D2i −D2i,Γ1] = 0 , (5.2.36)

[D2i−1 −D2i−1,Γ1] = (ai − a1)∂
i−1 . (5.2.37)

This embarrassment of riches suggests that this more relaxed notion of additional

‘symmetry’ is of little interest.
A final remark on the additional symmetries on the MRSKP hierarchy is in

order. Consider the additional flows Dm,0,0,1 generated by Q∂m. These flows
obey an algebra isomorphic to the one obeyed by the odd MRSKP flows them-

selves. Therefore it seems that one could consider them as the odd flows of yet
another supersymmetric extension of the KP hierarchy, having the odd flows of

MRSKP as additional symmetries and in fact sharing the same additional sym-
metries as MRSKP. This hierarchy is in fact the object of a recent paper by

Ramos [63]. It would be interesting to understand how this hierarchy fits in the

geometric picture of Mulase and Rabin.

the SKP2 hierarchy

We recall from Section 4.2 that the SKP2 hierarchy is defined as the universal

family of isospectral deformations of a SΨDO of the form L = D2+
∑

i≥1 UiD
2−i,

with Ui ∈ S and its evolution is described by a commuting family of flows

∂iL = −[Li
−,L] = [Li

+,L], where all the flows are even and therefore can be
represented in terms of an infinite set of even times {t1, t2, . . .} by ∂i =

∂
∂ti

. In

the following we shall restrict ourselves to operators L which are dressable; that
is, which satisfy the conditions U1 = U2 = 0.

Notice that one can dress the following obvious commutation relations

[∂n − ∂n, ∂] = 0 (5.2.38)

with an arbitrary φ = 1 +
∑

i≥1 ViD
−i, Vi ∈ S, and obtain the SKP2 flows.

Let us now consider the problem of finding the additional symmetries for this
hierarchy. Fortunately we can use our previous experience with KP and MRSKP
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to write down the generators of additional symmetries for SKP2. Indeed since

the hierarchy has only even flows, it follows that the x-like generator for the
additional flows of KP still commutes with the SKP2 flows. Moreover, and

because of the same reason, both D and Q can now be considered generators of
additional symmetries. In fact we have the following result:

Lemma 5.2.39. Let S[ti] be the extension ring of S by the even time variables
{ti} and let

Γ = x+
∑

t≥1

jtj∂
j−1

be a formal infinite order (super)differential operator in S[ti][[∂]]. This operator

enjoys the following properties: [∂i − ∂i,Γ] = 0 and [∂,Γ] = 1. Moreover, the

operators D and Q obey: [∂i − ∂i, D] = [∂i − ∂i, Q] = 0. �

We can now define the ‘additional’ flows of the SKP2 hierarchy as the fol-

lowing four-parameter family of odd and even flows

Dm,k,l,pφ = W ′(ΓkDlQp∂m) , (5.2.40)

with k ≥ 0, l = 0, 1, p = 0, 1 andm ∈ Z. Again, the original flows of the hierarchy

can be obtained as a particular case, namely Dm,0,0,0 = −∂m for m > 0.

Theorem 5.2.41. The additional flows are symmetries of the SKP2 hierarchy,
that is they commute with the MRSKP flows:

[Di, Dm,k,l,p] = 0 . (5.2.42)

Proof. Using the expression of the flows in terms of the supersymmetric Radul

map and Theorem 5.2.12 we have that

[∂i, Dm,k,l,p] = DW ′(−[∂i,ΓkDlQp∂m]φ) , (5.2.43)

with

[∂i,ΓkDlQp∂m]φ = DW ′(∂i)Γ
kDlQp∂m −DW ′(ΓkDlQp∂m)∂

i + [∂i,ΓkDlQp∂m]

= −[∂i − ∂i,ΓkDlQp∂m] , (5.2.44)

which using Lemma 5.2.39 gives us the announced result. �

Corollary 5.2.45. The algebra of additional symmetries of the SKP2 hier-
archy given by (5.2.40) is isomorphic to the Lie algebra of SDOP.
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Proof. Indeed, the isomorphism is given by

z 7→ −∂ , ξ 7→ 1
2(D −Q)∂−1

∂z 7→ Γ , ∂ξ 7→
1
2(D +Q) . (5.2.46)

�

the jskp hierarchy

Following the same path as for MRSKP it is easily seen that the JSKP flows

can be written in terms of the W ′ map, (5.2.22), by

D2nφ = −W ′(∂n) = −DW ′(∂n)φ

D2n+1φ = −W ′(∂n∂θ) = −DW ′(∂n∂θ)φ . (5.2.47)

Proposition 5.2.48. The JSKP flows satisfy a commutative Lie superalgebra.

Proof. This is already clear since [∂n, ∂m] = [∂n, ∂m∂θ] = [∂n∂θ, ∂
m∂θ] = 0. �

In this case we will look for additional symmetries generated by operators Γ
satisfying

[D2i − ∂i,Γ] = 0

[D2i+1 − ∂i∂θ,Γ] = 0 . (5.2.49)

The two obvious solutions are, as expected, the even and odd derivations on the
ring S, ∂ and ∂θ. This means in particular that, unlike MRSKP, all the JSKP

flows are also symmetries of the hierarchy. One has nevertheless more.

Lemma 5.2.50. Let S[ti] be the extension ring of S by the time variables {ti}
and let

Γ0 = x+
∑

j≥1

jt2j∂
j−1 +

∑

j≥1

jt2j+1∂
j−1∂θ (5.2.51)

Γ1 = θ +
∑

j≥1

t2j−1∂
j−1 (5.2.52)

Γ2 = x∂θ +
∑

j≥1

jt2j∂
j−1∂θ . (5.2.53)

be formal infinite order differential operators in S[ti][[∂, ∂θ]] of Z2 -degrees
|Γ0| = 0 and |Γ1| = |Γ2| = 1. These operators have the following proper-
ties:

a) [D2i − ∂i,Γk] = 0 and [D2i+1 − ∂i∂θ,Γk] = 0 for all k = 0, 1, 2;
b) [∂,Γ1] = 0, [∂θ,Γ1] = 1, [Γ1,Γ1] = 0;
c) [∂,Γ2] = ∂θ, [∂θ,Γ2] = 0, [Γ2,Γ2] = 0;
d) [∂,Γ0] = 1, [∂θ,Γ0] = 0, [Γ1,Γ2] = Γ0.
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Proof. It follows after a routine calculation. �

We can now define a three-parameter family of flows

D2m,k,lφ = W ′(Γk
0Γ

l
1∂

m)

D2m+1,k,lφ = W ′(Γk
0Γ

l
1∂

m∂θ) , (5.2.54)

where k ≥ 0, l = 0, 1, and m ∈ Z. Here the original JSKP flows are a special

case, Dm,0,0 = −Dm for m ≥ 0, whereas the other ones represent the additional
symmetries of the JSKP hierarchy.

Theorem 5.2.55. The additional flows are symmetries of the JSKP hierarchy,

in other words they commute with the flows on the Volterra group.

Proof. We only have to use Theorem 5.2.12 and we obtain, for instance, for

the even flows
[D2i, D2m,k,l] = −DW ′([∂i,Γk

0Γ
l
1∂

m]φ) , (5.2.56)

where

[∂i,Γk
0Γ

l
1∂

m]φ = DW ′(∂i)Γ
k
0Γ

l
1∂

m + [∂i,Γk
0Γ

l
1∂

m]

= −[D2i − ∂i,Γk
0Γ

l
1∂

m]

= 0 . (5.2.57)

Analogous computations give us that

[D2i, D2m+1,k,l] = −DW ′([∂i,Γk
0Γ

l
1∂

m∂θ]φ) = 0 , (5.2.58)

[D2i+1, D2m,k,l] = −DW ′([∂i∂θ,Γk
0Γ

l
1∂

m]φ) = 0 , (5.2.59)

[D2i+1, D2m+1,k,l] = −DW ′([∂i∂θ,Γk
0Γ

l
1∂

m∂θ]φ) = 0 , (5.2.60)

which finally proves the above statement. �

Corollary 5.2.61. The Lie superalgebra of symmetries of the Jacobian SKP
hierarchy is isomorphic to SDOP which is isomorphic (as a Lie algebra) to

SW1+∞.

Proof. Let A be the Lie superalgebra of symmetries given by (5.2.54). It is

generated via the Radul map by Γk
0Γ

l
1∂

m and Γk
0Γ

l
1∂

m∂θ for k ≥ 0, l = 0, 1 and
m ∈ Z. The isomorphism SDOP → A is given explicitly by

z 7→ −∂ , ξ 7→ ∂θ

∂z 7→ Γ0 , ∂ξ 7→ Γ1 . (5.2.62)

�
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Of the flows Dm,k,l defined by (5.2.54), all but the Dm,0,0 with m ≥ 0 are

additional symmetries. These additional symmetries are isomorphic to the direct
sum of SW∞ with the abelian algebra generated by the flows Dm,0,0 with m <

0. These flows are present only because the JSKP hierarchy is defined on the
superVolterra group. If, as in the KP hierarchy, JSKP were defined on the space

of Lax operators, these extra flows would not be present; for they act trivially
on L = φ∂φ−1.

The isomorphism between the additional symmetries of all three SKP hier-
archies deserves a final comment. The picture that begins to emerge is that the

additional symmetries, although realized dynamically with explicit dependence
on the times, are actually a kinematical property of the dynamical systems; that

is, symmetries of the phase space in which the systems are defined.



Chapter Six

REDUCTIONS OF SKP HIERARCHIES

We have seen in Chapter Four how one can build up the Lax formalism for the

supersymmetric integrable hierarchies by analogy with the nonsupersymmetric
case. We concluded then that there is no unique supersymmetric KP hierarchy

which enjoys all the properties we would expect it to do (for example to yield
by reduction all the generalized sKdV hierarchies). Rather we were forced to

define several SKP hierarchies, all of which contain KP as a particular reduc-
tion. A closer analysis of MRSKP and SKP2 revealed moreover that important

questions concerning these hierarchies still remain to be answered. We do not
understand yet the hamiltonian structure of the MRSKP hierarchy, although it

has been shown that the space of supersymmetric Lax operators admits a Poisson
structure analogous to the second Gel’fand-Dickey bracket of the n-KdV hierar-

chies. On the other hand the SKP2 hierarchy does not possess odd flows and its
bihamiltonian structure does not seem to display a superconformal structure.

There exists nevertheless a particular reduction of SKP2, the sKdV hierarchy,
which gives us a glimpse of hope since its natural Poisson structure—the superVi-

rasoro algebra—appeared via hamiltonian reduction from the Poisson structure

of the SKP2 hierarchy. Also a first attempt of unraveling the odd part of SKP2

has been made in [64] where nonlocal conservation laws for the sKdV equation

have been constructed. This particular example begs the question whether there
exist more general reductions of the SKP hierarchies which possess the proper-

ties we would like them to have, such as locality, hamiltonian structure, explicit
superconformal structure, odd flows...

In this chapter we will attempt to give answers to some of these questions.
In particular we show that for the case of dressable Lax operators we can en-

dow the SKP2 hierarchy with odd flows. Following [51] we study the symmetric
reduction of odd order sKdV hierarchies whose Poisson brackets define classical

W-superalgebras. Then we consider in detail the BSKP2 hierarchy which turns
out to be local, hamiltonian and whose Poisson brackets display a manifest su-

perconformal structure. The results in this chapter follow my paper [65] with
E. Ramos.

83
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6.1. DRESSABILITY AND ODD FLOWS FOR SKP2

Our main goal in this section is to define consistent odd flows for the SKP2

hierarchy. In order to do so we will consider particular SKP2 Lax operators
that admit a square root, namely L = Λ2, where Λ is the Lax operator of the

MRSKP hierarchy. We will be able to induce, via MRSKP, nonlocal odd flows
for dressable SKP2 Lax operators.

An SKP2 Lax operator L is called dressable, if there exists an even SΨDO

φ = 1 +
∑

≥1

AiD
−i , (6.1.1)

such that

L = φ∂φ−1 . (6.1.2)

A simple computation reveals the following:

Lemma 6.1.3. A necessary and sufficient condition for dressability is that U1 =
U2 = 0. �

In the introduction to Chapter Four, we motivated the SKP2 hierarchy by the

fact that L does not admit in general a (unique) square root. Notice nevertheless
that if we restrict ourselves to dressable L’s then there exists

L1/2 = φDφ−1 . (6.1.4)

In other words, the Lax operator of SKP2 admits a square root which is nothing
but the Lax operator of the MRSKP hierarchy. Clearly L1/2 will satisfy in this

case the dressability condition for MRSKP. As proven in [29] the square root,
if it exists, is not necessarily unique. Uniqueness can be achieved in our case if

we further impose manifest supersymmetry as well as homogeneity with respect
the natural grading. Moreover, if one works out explicitly the condition for the

square root of L to exist, one obtains once more that U1 and U2 must necessarily
vanish, and this is, as we have just shown, precisely the condition that L be

dressable. One more remark is in order. One can easily convince oneself, by

working out explicitly the square root and dressability conditions for SKP2, that
both the coefficients of L1/2 and φ are nonlocal in the Uj ’s.

We are now in a position to define odd flows for SKP2.

Proposition 6.1.5. Provided we restrict ourselves to dressable operators,
there is a one-to-one correspondence between flows in MRSKP and SKP2.
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Proof. Consider a generic flow of MRSKP:

DtΛ = [P,Λ] , (6.1.6)

with P a certain SΨDO. The flow on Λ2 is then

DtΛ
2 = (DtΛ)Λ + (−)|P |Λ(DtΛ)

= [P,Λ2] ; (6.1.7)

in other words,

DtL = [P,L] . (6.1.8)

Conversely, consider a generic SKP2 flow, of the form (6.1.8) and take into ac-
count the fact that L = Λ2. Then we get

(DtΛ− [P,Λ])Λ + (−)|P |Λ(DtΛ− [P,Λ]) = 0 . (6.1.9)

Assume for a contradiction that the expression in the parenthesis does not vanish

but rather that DtΛ − [P,Λ] = BND
N + BN−1D

N−1 + . . . , for some N ∈ Z.
The leading coefficients must satisfy the following conditions:

BN = 0 for N odd,

and
B′
N−1 = 0

B′
N + (−)|P |2BN−1 = 0

}
for N even. (6.1.10)

Then provided we drop the constants of integration, the leading coefficient BN

must vanish; whence

DtΛ = [P,Λ] . (6.1.11)

This proves the proposition. �

It is convenient to change now our notation of the SKP2 flows, namely we
will denote by Dp the p-th flow of the hierarchy in such a way that D2p = ∂p.

Corollary 6.1.12. The following are odd flows for the SKP2 hierarchy:

D2i−1L = −[L
i−

1
2

− ,L] . �

It is important to remark that although the odd flows are explicitly local in
terms of the MRSKP variables, they are not local when written in terms of the

SKP2 variables. This was already pointed out by Dargis and Mathieu in [64]
for the sKdV case. One could therefore ask whether there is no other way of

providing the SKP2 hierarchy with local odd flows. An explicit computation for
the first few odd flows suggests that there is none.
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6.2. THE SYMMETRIC REDUCTION

In this section we investigate the reduction of the supersymmetric Gel’fand–
Dickey bracket induced by demanding that the Lax operator have a definite

adjointness property. We basically follow [51], the difference being that we
consider general pseudodifferential Lax operators. To motivate the definition of

the adjoint, let us think of differential operators as acting on superfields with
inner product

〈U, V 〉 =

∫

B
UV . (6.2.1)

If L ∈ S+ is a homogeneous differential operator, we define its adjoint L∗ by

〈LU, V 〉 = (−)|L||U |〈U, L∗V 〉, for any homogeneous superfields U, V . The proof
of the following proposition is routine.

Proposition 6.2.2. ∗ extends to an involution in the space S of SΨDO’s
which obeys the following properties:
(1) For all P ∈ S, (P ∗)∗ = P
(2) For all homogeneous P,Q ∈ S, (PQ)∗ = (−)|P ||Q|Q∗P ∗

(3) If P ∈ S is homogeneous and invertible, (P−1)∗ = (−)|P |(P ∗)−1.

(4) For all p ∈ Z, (Dp)∗ = (−)
p(p+1)

2 Dp.
(5) For all P ∈ S, (P±)

∗ = (P ∗)±.
(6) For all P ∈ S, sresP ∗ = sresP (in particular, StrP ∗ = StrP ). �

If a Lax operator L = Dn + · · · has a definite adjointness property, it is dic-

tated by the first term. We shall say that L is symmetric if L∗ = (−)n(n+1)/2L.
We will show that the supersymmetric Gel’fand–Dickey bracket in the space

M2k+1 of Lax operators of a given odd order induces a Poisson bracket in the

submanifold M̃2k+1 of symmetric Lax operators and that the induced fundamen-
tal Poisson brackets define a W-superalgebra extending the N=1 superVirasoro

algebra.
In order to understand the constraints that the symmetry condition imposes

on the coefficients Ui of L it is convenient to write L in a manifestly symmetric

way. In general, a symmetric Lax operator has the form

L = Dn + 1
2

∑

j∈In

{
Vj , D

n−j
}
, (6.2.3)

where
{
Vj , D

n−j
}
= VjD

n−j + (−)j(n−j)Dn−jVj is the graded anticommutator

and the sum runs over the index set

In =
{
j = 1, 2, . . .

∣∣∣(−)(n−j)(n−j+1)/2 = (−)n(n+1)/2
}
. (6.2.4)

Equation (6.2.3) manifestly exhibits which of the fields Vj are independent;
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namely, if n is even, we pick those Vj with j ≡ 0, 1 mod 4; and if n is odd,

then we take those Vj with j ≡ 0, 3 mod 4.

Some general facts readily emerge. If n is odd, there is always an independent

field of weight 3
2 and, moreover, this is the field of smallest weight. One can show

that its Poisson bracket is that of the classical N=1 superVirasoro algebra. For

even n the situation is radically different: there is never a field of weight 3
2 but

there is always a field of weight 1
2 .

In order to describe the induced Poisson bracket we first need to identify
the vector fields and the one-forms on M̃2k+1 as subobjects of the corresponding

objects in M2k+1. The vector fields of M̃2k+1 will be parametrized by the defor-

mations of L that remain in M̃2k+1; that is, deformations of a symmetric Lax
operator L which keep it symmetric. These are clearly the differential operators

of order at most 2k obeying the same symmetry property as L. As explained
in Section 2.3, one-forms on M̃2k+1 must be chosen to be those one-forms on

M2k+1 which are mapped (via the Adler map) to vector fields tangent to M̃2k+1.

In other words, one-forms on M̃2k+1 are SΨDO’s X =
∑

lD
−l−1Xl satisfying

J(X)∗ = −(−)kJ(X). Computing this we find

J(X)∗ = [(LX)+L− L(XL)+]
∗

=(−)|X|+1
[
L∗(LX)∗+ − (XL)∗+L

∗
]

=− [L∗(X∗L∗)+ − (L∗X∗)+L
∗]

=(LX∗)+L− L(X∗L)+

=J(X∗) ; (6.2.5)

whence X must have the same symmetry properties of L, namely X∗ = −(−)kX ,

for it to be a one-form on M̃2k+1. It is easy to verify that these one-forms are

non-degenerately paired with the vector fields tangent to M̃2k+1. In fact, since

StrAX = StrA∗X∗ we see that the supertrace pairs up one-forms and vector
fields of the same symmetry properties. Therefore the Poisson bracket of two

functions F =
∫
B f and G =

∫
B g on M̃2k+1 is obtained from (4.1.28) (with J

given by (4.1.29)) by simply requiring that dF and dG have the correct symmetry

properties: (dF )∗ = −(−)kdF and the same for dG.

One can now explicitly compute the induced fundamental Poisson brackets

on M̃2k+1. We have seen that the field of smallest weight is V3, which has

weight 3
2 . One can actually show that the induced fundamental Poisson bracket

{V3(X) , V3(Y )} defines a N=1 superVirasoro algebra. Indeed if we define the

differential operators Ωij by

{Vi(X) , Vj(Y )} = Ωijδ(X − Y ) , (6.2.6)
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where the Ωij are taken at the point X , we find

Ω33 =
k(k + 1)

4
D5 +

3

2
V3D

2 +
1

2
V ′
3D + V ′′

3 , (6.2.7)

whence, if we let G = V3 this will give rise to a classical version of the N = 1

superVirasoro algebra

{G(X) , G(Y )} =
[k(k + 1)

4
D5 +

3

2
G(X)D2 +

1

2
G

′(X)D +G
′′(X)

]
δ(X − Y ) .

(6.2.8)

6.3. THE BSKP2 HIERARCHY

One of the remarkable features of the bihamiltonian structure for the KdV-
type hierarchies is the fact that the second Gel’fand–Dickey bracket exhibits

(after a standard reduction) a conformal structure. In the supersymmetric case
however, and in spite of the fact that the SKP2 hierarchy is bihamiltonian,

its second Gel’fand–Dickey bracket does not explicitly exhibit a superconformal
structure. On the other hand, its natural reduction to dressable Lax operators

gives rise to a nonlocal induced hamiltonian structure [66], whose first reduced
Poisson bracket is indeed the superVirasoro algebra. This encourages us to search

for a local reduction of the SKP2 hierarchy whose hamiltonian structure yields

an nonlinear extension of the superVirasoro algebra.

In the introduction to this chapter we remarked the existence of a partic-
ular reduction of SKP2 which displays these properties: the sKdV hierarchy is

the unique reduction (of a fourth order Lax operator) of the SKP2 hierarchy
satisfying the constraint

L∗ = DLD−1 , (6.3.1)

where ∗ is the involution in Proposition 6.2.2. On the other hand, this condition
is nothing but the supersymmetric analogue of the constraint used in [25] to

define the BKP hierarchy. This prompts us to consider the general reduction of
SKP2 defined by

L∗ = −DLD−1 . (6.3.2)

We call it the BSKP2 hierarchy and we denote by M̃2 the subspace of SKP2 Lax
operators satisfying this symmetry condition. This hierarchy is to be compared

with the orthosymplectic SKP hierarchy studied by Ueno, Yamada, and Ikeda in
[67]. The reduction (6.3.2) was shown in [55] to be consistent, as long as only

half of the flows are considered. Let us for the sake of completeness recall this
result.
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Proposition 6.3.3. The condition (6.3.2) is equivalent to the conditions

sres(L2n−1D−1) = 0 ,

2 sresL2n − sres(L2nD−1)′ = 0 . �

Let us now see what is the concrete form that the Lax operator must have
for it to satisfy the constraint condition; in other words, which are the fields

that survive the reduction. Since we have an infinite number of fields it is not
practicable to try to explicitly work out the constraint at the level of the Uj ’s.

Instead, it is more convenient to write the Lax operator L in a more symmetrical
form, by using a different basis.

In order to do this, as well as for later purposes, we define now a map ϕ

going from the space M1 of MRSKP Lax operators to the space M2 of SKP2

Lax operators, given by

L ≡ ϕ(Λ) = ΛD . (6.3.4)

It is not difficult to see that ϕ maps symmetric operators Λ into BSKP2 Lax op-
erators L obeying (6.3.2). From Section 2, we know that the symmetric operator

Λ can be written as

Λ = D + 1
2

∑

j≡0,3mod4
j>0

{
Vj , D

1−j
}
. (6.3.5)

It follows then that the BSKP2 Lax operator can be written without loss of

generality as

L = D2 + 1
2

∑

j≡0,3mod4
j>0

{
Vj , D

1−j
}
D . (6.3.6)

It is sufficient to write down the first few terms of L to realize that this reduction

sets the first two fields of L equal to zero. Hence L is dressable and we can apply
the machinery developed in the previous section in order to define the odd flows

associated to the half-integer powers of the Lax operator.

Let us now investigate which of the SKP2 flows survive the reduction. From

Section 1 we know that SKP2 has both odd and even flows.

Proposition 6.3.7. Only those flows Dp with p ≡ 2, 3 mod 4 are consistent

with the reduction (6.3.2).

Proof. Let us first consider the even flows D2p. Take the adjoint of the even

SKP2 flow given by (4.3.13) and use the condition (6.3.2). If follows already from
the leading term that n has to be an odd integer. In addition one gets that the
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following condition has to be satisfied:

(DLpD−1)− = DLp
−D

−1 . (6.3.8)

It is a simple computational matter to check that for A an arbitrary SΨDO,
(DAD−1)− = DA−D

−1 if and only if sresAD−1 = 0, which is precisely the

case for p odd by Proposition 6.3.3. In order to see which of the odd flows will
survive one has to first analyze the MRSKP hierarchy under the reduction Λ∗ =

−DΛD−1. In this case one sees that condition (6.3.2) implies sres Λ4k−1D−1 = 0,
which is equivalent to

(DΛ4k−1D−1)− = DΛ4k−1
− D−1 . (6.3.9)

From this it follows that only the MRSKP flows D4k−1 preserve the constraint.

Therefore only the SKP2 flows D4k−1 preserve the constraint. In summary, we
find that precisely the SKP2

D4k−1L = −[L
2k−

1
2

− ,L] and

D4k−2L = −[L2k−1
− ,L]

(6.3.10)

will survive. �

One can trivially write down the first flow D2 on any of our fields, Vj , j ≡
0, 3 mod 4, j > 0, since D2L = [L+,L] = (∂L).

Finally, let us remark that these flows span the following subalgebra of the

algebra of flows:

[D4i−2 , D4j−2] = [D4i−2 , D4j−1] = 0 and [D4i−1 , D4j−1] = 2D4i+4j−2 .

(6.3.11)

hamiltonian structure

One would naively expect that the hamiltonian structure for BSKP2 can be

simply obtained by a suitable reduction of the hamiltonian structure of the SKP2

hierarchy. Unfortunately this is not the case, since the constraints seem to be

formally first-class. Although in the finite-dimensional case there exists a well-
developed machinery to treat such constraints, here their infinite number forbids

a similar analysis. Nevertheless, the solution to the problem is suggested by the
connection (6.3.4) between the MRSKP and SKP2 Lax operators. In a nutshell,

we will pull back the Adler map from MRSKP to SKP2 and we will check that
the even flows are hamiltonian relative to the induced hamiltonian structure.
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Let us consider again the map ϕ from the space M1 of MRSKP operators to

the space M2 of SKP2 operators given by equation (6.3.4). The image under ϕ

of the subspace M̃1 defined by the condition Λ∗ = −Λ is precisely the space M̃2

of BSKP2 Lax operators.
From the geometric formalism developed in Chapters Three and Four, we

know that the Adler map can be understood as tensorial map from one-forms to
vector fields. Therefore, we can use the map ϕ to pull back the Adler map on

M̃1 to M̃2. This is done by completing the following commutative square:

T ∗
ΛM̃1

J
−→ TΛM̃1xϕ∗

yϕ∗

T ∗
LM̃2

JB

99K TLM̃2

In other words, JB = ϕ∗ ◦ J ◦ ϕ∗. Let us compute this. If X is any 1-form in
M̃2, it obeys

X∗ = (−)|X|DXD−1 . (6.3.12)

Its pull-back via ϕ to a one-form on M̃1 is given by

Y = ϕ∗(X) = DX . (6.3.13)

Notice that Y ∗ = −Y and therefore it is indeed a one-form on M̃1. Similarly, if
A is a vector field on M̃1, its pushforward via ϕ to a vector field on M̃2 is given

by ϕ∗(A) = AD. Therefore, the induced hamiltonian map in M̃2 is given by

JB(X) = (LX)+L− LD−1(DXLD−1)+D . (6.3.14)

In order to show that JB provides a hamiltonian structure for the BSKP2

flows, let us first consider the following set of hamiltonian functions

H4k−2 =
1

2k − 1
StrL2k−1 . (6.3.15)

Their gradients are given by

dH4k−2 = L2k−2 , (6.3.16)

and they obey (dH4k−2)
∗ = DdH4k−2D

−1, so they define one-forms on M̃2.

From (6.3.14) and Proposition 6.3.3 it follows that

D4k−2L = JB(dH4k−2) (6.3.17)

as required. To prove that the odd flows are hamiltonian with respect to JB
is a much more delicate matter. Notice that the natural odd hamiltonians are
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provided by

H4k−1 =
1

2k − 1
2

StrL2k− 1
2 , (6.3.18)

and their integrands are nonlocal in the Uj . Therefore the formalism developed

for differential polynomials of the Uj should be extended to integrodifferential
polynomials. Nevertheless, if one proceeds formally, one obtains

dH4k−1 = L2k−3/2 , (6.3.19)

which defines an odd one-form in M̃2; whence

D4k−1L = JB(dH4k−1) . (6.3.20)

that is, the odd flows are also hamiltonian.
In order to compute the Poisson bracket between two functions F =

∫
B f

and G =
∫
B g on M̃2, we simply require that their differential have the correct

symmetry properties; that is, (dF )∗ = (−)|dF |DdFD−1 and the same for dG,

and use (4.1.28) with JB. Notice that despite its appearance the fundamental

Poisson brackets induced by (6.3.14) in M̃2 are local. This can be seen most

easily by realizing that at the component level the map ϕ is simply an identity,

therefore the locality of the fundamental Poisson bracket on M̃1 ensures the
locality of the fundamental Poisson bracket among the Uj . Moreover this induced

Poisson bracket defines a nonlinear extension of the N = 1 superVirasoro algebra
(WBSKP ) by fields of spin k > 0, where 2k ≡ 0, 3 mod 4.
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SUPERSYMMETRIC HIERARCHIES IN STRING THEORY

One of the most pleasant surprises that noncritical string theory has had
in store for us is its relation with classical integrable hierarchies of the KP-

type. The KdV hierarchy appeared unsuspectedly in the double scaling limit

of the one-matrix model—a fact which recurs in the multimatrix models for the
generalized KdV hierarchies, and which allows one to exactly compute correlation

functions on arbitrary topology. Indeed, the partition function of the (p − 1)-
matrix model, which in its qth critical point describes (p, q) conformal matter

coupled with two-dimensional gravity, coincides with the τ -function of the p-KdV
hierarchy. This τ function has to be special in the sense that it has to fulfill an

infinite set of W-constraints which excludes, for example, the polynomial soliton
solutions. This success notwithstanding, the generalization of these techniques

to the supersymmetric case is still an open problem and the precise relation, if
any, with supersymmetric integrable hierarchies remains elusive.

In this chapter we discuss new supersymmetrizations of the generalized KdV
hierarchies suggested by a new supersymmetric extension of the KdV hierar-

chy that has appeared in a matrix-model inspired approach to two-dimensional
quantum supergravity. The resulting supersymmetric hierarchies are generically

nonlocal, with the exception of the KdV and Boussinesq which turn out to be in-
tegrable and bihamiltonian. The first section is expository in nature, describing

briefly the appearance of the KdV hierarchy in the hermitean one-matrix model.
We follow the treatment in [68]. The next two sections describe the contents of

my papers [69] and [70] with J.M. Figueroa-O’Farrill.

7.1. THE KDV HIERARCHY AND THE ONE-MATRIX MODEL

Let us start by defining the Hermitean one-matrix model. Consider there-

fore the zero-dimensional quantum field theory having as generator of Feynman
diagrams the following partition function

Z(N, t) =

∫
dM exp−N(12 TrM

2 + tTrM4) , (7.1.1)

whereM is a Hermitean N×N matrix and we have the standard measure dM =∏
i dM

i
i

∏
i<j d(ReM

j
i )d(ImM

j
i ). Starting from this field-theoretical model one
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can immediately deduce the Feynman rules and and draw the corresponding

Feynman diagrams. These will turn out to have a double-line structure due
to the matrix-valued fields (see Fig. 1.3). By joining together the edges of the

double lines in such a way that they form closed curves and by filling these circles
with oriented discs, we can associate to any of these diagrams a Riemann surface

Σ together with a simplicial decomposition.

We are clearly interested in the continuum limit of this model. Therefore, in
order to obtain the large N behavior of the model, we need the power counting

of N for a given connected diagram. (Notice that W (N, t) = logZ(N, t) will

generate all the connected diagrams.) Each vertex contributes a factor of N ,
each edge (propagator) a factor of N−1 since the propagator is the inverse of

the quadratic term, and each face a factor of N due to the trace. Thus each
connected diagram has an overall factor NV−E+F = N2−2h = Nχ (where χ is

the Euler characteristic of the Riemann surface) and as a result W (N, t) may be
expanded as

W (N, t) =
∞∑

h=0

N2−2hWh(t) , (7.1.2)

with

Wh(t) =

∞∑

n=0

tnS(h, n) , (7.1.3)

where S(h, n) is the number of all possible quadrangulations of a surface of genus

h with n squares.

Suppose we consider now, independently, a D = 0-dimensional string theory,
that means a pure theory of surfaces with no coupling to additional “matter”

degrees of freedom on the string worldsheet. The remarkable result is that if
one computes the corresponding regularized partition function obtained by dis-

cretizing the Riemann surfaces it turns out that this can be identified with the

free energy of the matrix model. Moreover one can recover the string theory in
a suitably defined continuum limit, known as the double scaling limit.

In the continuum limit we are clearly interested in the case of an infinite

number of squares, that is the limit in which the infinite tessellations dominate
the sum (7.1.3). This occurs when t → tc for which (7.1.3) ceases to converge.

Given the large n behaviour of S(h, n) ∼ ecnn(γ−2)χ/2−1bh, where c, γ, bh are
constants, the genus h contribution starts to diverge when t → tc = e−c. The

double scaling limit is defined then by N → ∞, t → tc, keeping fixed the

“renormalized” string coupling constant λs, where

λ−1 = N

(
t− tc
tc

) 2−γ

2

. (7.1.4)
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Then the continuum limit of W (N, t) will be given by

Wcont =
∞∑

h=0

λ2−2h
s bhΓ(

(γ − 2)χ

2
) . (7.1.5)

orthogonal polynomials and the kdv hierarchy

Our aim in this section is to see how in the process of computing the partition

function of the one-matrix model the KdV hierarchy and the string equation
appear. For this it will be useful to consider a slight generalization of (7.1.1),

namely

Z(N, t) =

∫
dM e−N TrV (M,t) , (7.1.6)

where the general potential V (M, t) is given by

V (M, t) =
1

2
TrM2 +

∞∑

k=0

tk TrM
2k . (7.1.7)

In other words we consider tessellations of genus h Riemann surfaces by 2k-gons
of arbitrary k. This model is invariant under the unitary group U(N) which

acts like M 7→ UMU†, leaving dM and V (M, t) unchanged. This allows one to
bring any matrix M to a diagonal form Λ = diag(λ1, λ2, . . . , λN ), such that the

partition function becomes

Z(N, t) =
ΩN

N !

∫

RN

N∏

i=1

dµ(λi)
∏

i<j

(λi − λj)
2 , (7.1.8)

where the new measure is given by dµ(λi) = dλie
−NV (λi,t), with V (λi, t) =

1
2λ

2
i+

1
2

∑∞
k=0 tkλ

2k
i and ΩN = VolU(N). This integral can be nicely factorized by

introducing the orthogonal polynomials ψn(λ), n = 0, 1, 2, . . . corresponding
to this measure ψn(λ) = λ+ . . . such that

∫
dµ ψn(λ)ψm(λ) = hnδnm , (7.1.9)

obtaining in this fashion

Z(N, t) = ΩN

N−1∏

n=0

hi(t) . (7.1.10)

The way to compute the hi’s is by introducing the infinite-dimensional ma-
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trices P and Q defined by

Qnmhm =

∫
dµ ψn(λ)λψm(λ)

Pnmhm =

∫
dµ ψn(λ)

d

dλ
ψm(λ) , (7.1.11)

that obviously obey [P,Q] = 1, which is the discrete analogue of the string

equation.
The remarkable fact is that in the double scaling limit the matrix Q becomes

a second-order differential operator of the form

Q = ∂2 + u(x, t) , (7.1.12)

where the field u(x, t) = 2∂xW (t). This differential operator not only looks very

much like the Lax operator of the KdV hierarchy, but indeed satisfies the KdV
flows

∂Q

∂tk
= [Q

k/2
+ , Q] , (7.1.13)

whereas the string equation reads

1 =
∞∑

k=1

ktk[Q,Q
k/2−1
+ ] . (7.1.14)

What about the continuum limit of the matrix P ? After much toil it follows

that P turns into the differential operator

P = −1
2(MQ−

1
2 )+ , (7.1.15)

where M is the dressed version M = φΓφ−1 of the operator in (5.1.16).

Γ =

∞∑

j=1

jtj∂
j−1 . (7.1.16)

This is equivalent to saying that the partition function of the one-matrix
model Z(x, t) = exp(W (x, t)) is a τ -function for the KdV hierarchy obeying—as

a consequence of the string equation—an infinite set of constraints

LmZ(x, t) = 0 , (7.1.17)

for m ≥ −1, where the operators Lm are differential polynomials in the tk’s
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satisfying the Virasoro algebra

[Ln, Lm] = (n−m)Ln+m , (7.1.18)

for any n,m ≥ −1 or, more precisely, forming a maximal anomaly-free subalgebra
of the Virasoro algebra.

7.2. INTEGRABLE HIERARCHIES IN SUPERMATRIX MODELS

supersymmetric ‘matrix’ models

Given the success of the matrix model approach to noncritical string theory
and the most pleasant surprise of its relation with classical integrable hierarchies

of the KdV type, it seems natural to try to construct a similar approach to

noncritical superstrings. This nevertheless turns out to be a fairly difficult task.
The generalization of these techniques to the supersymmetric case is still an

open problem and the precise relation, if any, with supersymmetric integrable
hierarchies remains elusive.

In order to circumvent the problems encountered in an earlier unsuccessful
attempt ([71]) to define a theory of noncritical superstrings using supermatrices,

a model was proposed in [72] in which one does away with the matrices all
together, and takes as a starting point the integral over the would-be eigenvalues,

which is the supersymmetric analogue of (7.1.8)

Zs(N, t, τ) ∝

∫ N∏

i=1

dµ(λi, θi)
∏

i<j

(λi − λj − θiθj)
2 , (7.2.1)

where θi are odd variables and the measure is given by dµ(λ, θ) = dλ dθ e−V (λ,θ)

with the ‘potential’ V (λ, θ) =
∑

k≥0(tk + τkθ)λ
k.

By imposing superVirasoro constraints—in analogy with the Virasoro con-

straints in the one-matrix model—correlation functions and critical exponents
were calculated to first order in the topological expansion. Remarkably, they

were found to coincide with those of certain superconformal matter coupled to
2−d supergravity. Recently, in [73], the model was solved for arbitrary genus.

In the double scaling limit the analogue of the field u = 2∂2 logZ is now a pair
(u, ξ) with u the ‘body’ of the two-point function of the puncture operator and

ξ the first fermionic scaling variable, satisfying

∂2 logZs = u+ ξ∂2ξ . (7.2.2)

Moreover the fields u and ξ were found to satisfy a whole hierarchy of flows which
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looked very much like a supersymmetric extension of the KdV hierarchy. Indeed

the odd flows on u are trivial

∂u

∂τk
= 0 ∀k , (7.2.3)

whereas the even flows are those of the KdV hierarchy:

∂u

∂tk
= R′

k+1 (7.2.4)

=
[
κ2∂3 + 2u∂ + 2∂u

]
·Rk , (7.2.5)

where the Gel’fand–Dickey polynomials Rk = Rk(u) are the gradients of the

conserved charges of the KdV hierarchy and κ is the renormalized string cou-
pling constant. The equality of (7.2.4) and (7.2.5) imply the celebrated Lenard

relations between the Rk, which can be translated into a recursion relation for
the flows:

∂u

∂tn+1
=
[
κ2∂2 + 2u+ 2∂u∂−1

]
·
∂u

∂tn
. (7.2.6)

Normalizing R0 = 1
2 , we can compute all the other Rk recursively: R1 = u,

R2 = κ2u′′ + 3u2, and so on. In terms of the Rk, the commutativity of the KdV
flows translates into

∂R′
k

∂tn
=
∂R′

n+1

∂tk−1
, (7.2.7)

an identity that, as we will see shortly, implies the invariance of the even flows
under supersymmetry. From the analysis in [73], ξ is given by

ξ = −
∑

k≥0

τkRk , (7.2.8)

wherefrom we can read how it evolves along the flows

∂ξ

∂τk
= −Rk and

∂ξ

∂tn
= −

∑

k≥0

τk
∂Rk

∂tn
. (7.2.9)

The first nontrivial even flows were found in [73] to be

∂u

∂t1
= κ2u′′′ + 6uu′ and

∂ξ

∂t1
= κ2ξ′′′ + 6uξ′ , (7.2.10)

whereas the odd flows were found to be

∂u

∂τ1
= 0 and

∂ξ

∂τ1
= −u . (7.2.11)

Notice that the the first equation in (7.2.10) is nothing but the KdV equation
for u.
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the skdv-b hierarchy

The purpose of this section is to identify, along the lines in [69], the hierarchy
found in [73] and mention some of its immediate properties: conserved charges,

bihamiltonian structure, and integrability. We will conclude that this hierarchy
is simply a supersymmetric covariantization of the KdV hierarchy, and as such

not very different from it.

It was observed already in [73] that the first even flow on u and ξ is invariant
under the (global) supersymmetric transformations

δu = ξ′ and δξ = u . (7.2.12)

In fact, as we will show in a moment, this continues to be the case for all the even

flows. On the other hand, the odd flows are not supersymmetric, for whereas ξ
evolves, its supersymmetric partner u does not. Nevertheless, one can modify

the odd flows to make them supersymmetric. We will comment on this further
on.

Proposition 7.2.13. The even flows are invariant under (7.2.12), while the
odd flows satisfy [

δ ,
∂

∂τn

]
= −

∂

∂tn−1
. (7.2.14)

Proof. We first consider the even flows:
[
δ ,

∂

∂tn

]
u =

(
δRn+1

δu
· ξ′
)′

−
∂ξ′

∂tn

= −


∑

k≥0

τk
∂R′

n+1

∂tk−1




′

+


∑

k≥0

τk
∂R′

k

∂tn




′

= 0 .

Notice that we can rewrite the flows on ξ in a simpler way:

∂ξ

∂tn
= δRn+1 . (7.2.15)

From this, the analog result for ξ follows trivially, because

δ
∂ξ

∂tn
= R′

n+1 =
∂u

∂tn
=

∂

∂tn
δξ . (7.2.16)

On the other hand, for the odd flows we obtain for u

[
δ ,

∂

∂τn

]
u =

∂ξ′

∂τn
= −

∂u

∂tn−1
, (7.2.17)
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whereas for ξ one has

[
δ ,

∂

∂τn

]
ξ = −δRn = −

∂ξ

∂tn−1
, (7.2.18)

where we have once again used (7.2.15). �

Since the sKdV-B hierarchy is supersymmetric, one can express its flows in

a way that makes this manifest, whereto we introduce the superfield T = ξ+ θu,
a function in a (1|1) superspace. In superspace, the supersymmetry algebra is

realized as supertranslations, which on superfields look like δT = QT , where
Q = ∂

∂θ − θ∂. We will denote by D the supercovariant derivative D = ∂
∂θ + θ∂ ,

which anticommutes with Q. One can recover the fields u and ξ by taking the
appropriate projections: u = DT |θ=0 , ξ = T |θ=0.

Rewriting both equations in (7.2.10) as a single equation on the superfield
T , we find

∂T

∂t1
= κ2T [6] + 6T ′T ′′ , (7.2.19)

where [ ] denotes differentiation with respect to D. Note that we are using the
convention that on a superfield ′ denotes derivative with respect to D, whereas

on components it denotes derivative with respect to ∂. This should cause no
confusion. Now notice that if we differentiate both sides of the equation once

more with respect to D, we get

∂T ′

∂t1
= κ2T [7] + 6T ′T ′′′ , (7.2.20)

which is nothing but the KdV equation (cf. the first equation in (7.2.10)) for the

superfield T ′ = u + θξ′. In fact, as we now show, this continues to be the case
for all the other equations of the hierarchy; whence we will be able to conclude

that the sKdV-B hierarchy is essentially equivalent to the KdV hierarchy.

This may require some explanation. The abstract KdV hierarchy is defined
as the hierarchy of isospectral deformations of the Lax operator L = κ2∂2 + u,

where u is simply a commuting variable generating a differential ring. Particular
representations of this abstract KdV hierarchy are obtained by letting u be, for

instance, a smooth function on the circle or a rapidly decaying smooth function
on the real line. A more exotic representation can be defined by taking u to be

an even superfield, say, T ′. We claim that the hierarchy so obtained is precisely
sKdV-B. For notational convenience we will denote by KdV(T ′) the KdV hier-

archy with T ′ as the basic variable, and reserve KdV for when the basic variable
is u.

Consecutive flows in both the KdV(T ′) and sKdV-B hierarchies are related
by a recursion relation. This means that knowing the first flow one can obtain
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all the others by repeated application of a recursion operator. We have seen that

the first flows of both hierarchies agree, thus all we need to show in order to
prove the equivalence is that the recursion operators are the same.

The recursion relation for the flows of the KdV(T ′) hierarchy can be read off

from (7.2.6) and is given by

∂T ′

∂tn+1
=
[
κ2∂2 + 2∂T ′∂−1 + 2T ′

]
·
∂T ′

∂tn
. (7.2.21)

Stripping off a D from both sides, we can rewrite this as

∂T

∂tn+1
=
[
κ2∂2 + 2DT ′D−1 + 2D−1T ′D

]
·
∂T

∂tn
, (7.2.22)

which in components reads

(
∂ξ

∂tn+1

∂u
∂tn+1

)
=

(
κ2∂2 + 2u+ 2∂−1u∂ 2∂ξ∂−1 − 2∂−1ξ∂

0 κ2∂2 + 2u+ 2∂u∂−1

)
·

(
∂ξ
∂tn
∂u
∂tn

)
, (7.2.23)

and this, in turn, agrees with the recursion relation (40) in [73]. Thus, we
conclude that the flows of the two hierarchies agree.

bihamiltonian structure and integrability

It was shown in [32] that sKdV-type reductions of the SKP2 hierarchy are
bihamiltonian: the two structures being given by the supersymmetric analogs of

the Gel’fand–Dickey brackets constructed in [18]. In particular, the hierarchy

associated to the operator D4+U1D
3+U2D

2+U3D+U4 is bihamiltonian, and
so is its reduction U1 = U2 = U4 = 0 to sKdV. It would thus seem reasonable

to expect that the sKdV-B hierarchy, which is obtained as the reduction U1 =
U2 = U3 = 0 and U4 = T ′, would inherit a bihamiltonian structure in this

fashion. However, this turns out not to be the case: it is easy to show that
setting U1 = U2 = U3 = 0 collapses the rest of the phase space.

We can nevertheless exhibit a bihamiltonian structure for sKdV-B exploiting

its equivalence with KdV(T ′). We first rewrite the analogs of (7.2.4) and (7.2.5)

for KdV(T ′):

∂T ′

∂tk
= ∂ ·

δHKdV
k+1

δu

∣∣∣∣∣
u=T ′

(7.2.24)

=
[
κ2∂3 + 2T ′∂ + 2∂T ′

]
·
δHKdV

k

δu

∣∣∣∣∣
u=T ′

. (7.2.25)
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For HKdV
k =

∫
hk(u), we have that

δHKdV
k

δu

∣∣∣∣∣
u=T ′

=
∑

i≥0

(∂i)∗ ·
∂hk
∂u(i)

∣∣∣∣
u=T ′

=
∑

i≥0

(D2i)∗ ·
∂hk

∂T [2i+1]

= −D−1
∑

i≥0

(D2i+1)∗ ·
∂hk

∂T [2i+1]

Since hk(T
′) only depends on the odd D-derivatives of T we may add for free

the contribution of the even derivatives, and we obtain

δHKdV
k

δu

∣∣∣∣∣
u=T ′

= −D−1 ·
∑

i≥0

(Di)∗
∂hk
∂T [i]

= D−1 ·
δHsKdV−B

k

δT
(7.2.26)

for HsKdV−B
k =

∫
B hk(T

′). We can thus rewrite (7.2.24) and (7.2.25) as follows

∂T

∂tk
=
δHsKdV−B

k+1

δT
(7.2.27)

=
[
κ2∂2 + 2D−1T ′D + 2DT ′D−1

]
·
δHsKdV−B

k

δT
.

These equations look already to be in hamiltonian form, with Poisson structures

J1 = 1 and J2 = κ2∂2 + 2D−1T ′D + 2DT ′D−1. Notice that J1 satisfies the
Jacobi identities trivially, since it is constant. It may seem at first odd that it

is not antisymmetric—but this is nothing new in supersymmetric hierarchies,
which can have both even and odd Poisson structures. The second structure

J2 may not seem obviously Poisson, but it is not hard to show that the Jacobi
identities are satisfied. Notice that J2 also defines odd Poisson brackets which are

moreover nonlocal. This is again nothing new in supersymmetric hierarchies: the

first Poisson structure of sKdV is also nonlocal; although the flows, just like the
ones here, are local. Notice, parenthetically, that as expected J2 J

−1
1 coincides

with the recursion operator (7.2.22) for sKdV-B.
Finally, notice that J1 can be obtained from J2 by shifting T ′ 7→ T ′ + λ.

Since J2 is Poisson for any T , it follows that J1 and J2 are coordinated. Usual
arguments now imply that the conserved charges are in involution relative to

both Poisson structures. In summary, sKdV-B is an integrable bihamiltonian
supersymmetric hierarchy.
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skdv-b as a reduction of skp-type hierarchies

Since the sKdV-B flows are given by the isospectral deformations of the Lax

operator L = κ2∂2+T ′, it is easy to see that sKdV-B is but a particular reduction
of the SKP2 hierarchy. First of all it is clear that L has a unique square root of

the form

L1/2 = κ∂ +
∑

i≥1

Ai(T
′)∂1−i , (7.2.28)

where the Ai(T
′) are ∂-differential polynomials in T ′. In terms of L1/2, the flows

defining sKdV-B are given by

∂L1/2

∂tn
∝
[
L
n−1/2
+ , L1/2

]
. (7.2.29)

Notice that L1/2 is a special case of the Lax operator L = κ∂+
∑

k≥1Bk(T )D
2−k

for the SKP2 hierarchy, which was treated in Section 4.2 (κ aside). Here, the
Bk(T ) are D-differential polynomials in T . Moreover the SKP2 flows are given by

(4.3.13) which agree (after relabeling and rescaling the times) with (7.2.29). In

other words, the submanifold of SKP2 operators of the form (7.2.28) is preserved
by the SKP2 flows and, moreover, these flows agree with the ones defining sKdV-

B.

Furthermore, since the Lax operator L = κ2∂2 + T ′ can be ‘undressed’, one
can map the sKdV-B hierarchy into the even part of the MRSKP hierarchy or,

equivalently, the Jacobian SKP hierarchy. To this effect, let us define an element
φ of the Volterra group by L = φκ2∂2φ−1. In terms of φ, the sKdV-B flows can

be written as (up to κ factors)

∂φ

∂tn
∝ −(φ∂2n+1φ−1)−φ . (7.2.30)

This equation is then the one defining the even flows of the SKP hierarchy, when

we think of φ as an element of the larger superVolterra group.

some remarks on odd flows

Although as proven in Proposition 7.2.13 the odd flows are not supersym-

metric, it is possible to modify them in such a way that they are. First of all
notice that the explicit expression (7.2.8) of ξ as a function of the odd times

and the Rk can only be reconciled with its transformation law (7.2.12) under
supersymmetry, if τ1 transforms under supersymmetry. To see this, let us plug



104 Chapter Seven: Supersymmetric Hierarchies in String Theory

(7.2.8) into the second equation of (7.2.12):

u = −
∑

k≥0

(δτk)Rk +
∑

k≥0

τkδRk

= −
∑

k≥0

(δτk)Rk −
∑

k≥0

τk
∂

∂tn−1

∑

ℓ≥0

τℓRℓ by (7.2.15) and (7.2.8)

= −
∑

k≥0

(δτk)Rk −
∑

k,ℓ≥0

τkτℓ
∂Rℓ

∂tn−1

= −
∑

k≥0

(δτk)Rk by (7.2.7)

which implies that

δτk = −δk,1 . (7.2.31)

Consider now the flows given by

Dn ≡
∂

∂τn
− τ1

∂

∂tn−1
. (7.2.32)

From (7.2.31) and (7.2.14) it follows that these flows are supersymmetric. It is
moreover obvious that they commute with the even flows, and that all Dn6=1

(anti)commute among themselves. The remaining algebra of flows is

D2
1 = −∂ and [D1 , Dn] = −

∂

∂tn−1
∀n > 1 , (7.2.33)

where we have used the fact that ∂
∂t0

= ∂. This defines a supersymmetric exten-
sion of the sKdV-B hierarchy by odd flows.

It now remains to find a representation of the above algebra of flows in
superspace. The main obstacle lies in that the Dn explicitly depend on τ1 which,

as (7.2.31) suggests, should be represented as −θ. It is easy to check that the
representation induced from δ 7→ Q and τ1 7→ −θ is inconsistent, and we have

thus far been unable to find a consistent superspace representation for the odd
flows.

Alternatively one could try to induce odd flows via the embedding of the

sKdV-B hierarchy into the even part of (a reduction of) the Jacobian SKP hi-
erarchy. Nevertheless, via (7.2.30), we can understand these flows as flows in

the superVolterra group. It is easy to see that the flows of neither of the two
hierarchies preserve the Volterra subgroup where φ lives.
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7.3. NEW SUPERSYMMETRIC KDV HIERARCHIES

We have seen in the previous section how the new supersymmetric extension

of the KdV hierarchy that has appeared in the context a matrix-model-inspired
approach to 2d quantum supergravity is but the KdV hierarchy in disguise—the

KdV variable being replaced by an even superfield.
This result raises the question whether this supersymmetrization works for

all the generalized KdV hierarchies. This question is interesting in view of its
applications to noncritical superstrings, as well as from the the general theory

of supersymmetric integrable systems. As evinced in Chapter Three, one can
actually prove [70] that the supersymmetrization in [69] works only in the case

of the Boussinesq hierarchy, whereas a different and—in a sense—more natural
supersymmetrization works for all cases. These more general supersymmetric

hierarchies are in a sense not new, since one can prove that they are particular

reductions of the known supersymmetric KP hierarchies. Nevertheless their bi-
hamiltonian structures do not arise in this way, and the conserved charges are

constructed in a novel fashion that has features which make it interesting in its
own right.

To understand the idea behind these new supersymmetrizations, let us briefly
recall the main features of the generalized KdV hierarchies. The n-KdV hier-

archy is defined as the isospectral flows of the differential operator L = ∂n +∑
i≥2 ui∂

n−i. The flows are given by equations of the form

∂ui
∂tj

= Pij(u) (7.3.1)

where the Pij are differential polynomials in the {ui}. These flows are then

extended as evolutionary derivations—i.e., derivations commuting with ∂—to
the whole differential ring R[u] generated by the {ui}. Therefore, formally, the

n-KdV hierarchy is defined on any differential ring which is freely generated by

abstract variables {ui}. One can go a long way along this formal path. First of all,
one can prove that the flows commute. Furthermore, using the formal calculus

of variations, one can then define hamiltonian structures, construct conserved
charges in involution, and prove the formal integrability of the hierarchies. It is

only when discussing solutions of the evolution equations that one is forced to
choose a concrete realization for the differential ring R[u] as a subring, say, of

the (rapidly decaying, periodic,...) smooth functions on the real line.
As we have seen, the supersymmetric extension of the KdV hierarchy (n = 2)

discovered in [73]—hereafter referred to as sKdV-B—is obtained by replacing the
KdV variable u by the even superfield U ′ = u + θξ′. Since U ′ freely generates

a differential ring, we are well within the domain of the formal KdV hierarchy
and, in particular, this means that all the above mentioned results carry over.
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There are two caveats, however. First of all, we want to interpret these

flows as those from a supersymmetric hierarchy. This means that we cannot
simply take the conserved charges to be the ones that would follow from the KdV

hierarchy with U ′ replacing u, since these still have θ-dependence. In fact, each
KdV conserved charge furnish us now with two conserved charges, since both

the θ-dependent and the θ-independent parts are separately conserved. Only
one of them, however, is invariant under supersymmetry and is the one that we

would understand as the supersymmetric conserved charge. The second caveat
is that since it is ξ′ that enters in the superfield, the evolution equations will be

equations for ξ′. We must then make sure that the resulting equations for ξ are
indeed local.

As we showed previously neither of these two problems prevent the super-
symmetrization of the KdV hierarchy, and one can prove along similar lines that

neither are the analogous problems present for the supersymmetrization of the
Boussinesq (n=3) hierarchy. For n > 3, however, the resulting equations for the

superpartners of the ui are not in general local and we are forced to conclude

that the supersymmetrization does not work.
One may wonder why it is that we replace the ui by U ′

i and not simply

by even superfields Vi = ui + θσi. From the point of view of supersymmetric
integrable systems, of course, there is no reason not to consider these hierarchies

which, in fact, appear much more natural [70]. However, they do not seem to
the ones that are interesting in view of their applications to superstring theory.
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SUMMARY OF CONTENTS

This thesis centers around the topics of integrable hierarchies and string

theory. It is based on my papers [69], [70], [52], and [65] written in 1993 and
1994 at the University of Bonn, where I am graduate student, and at Queen Mary

and Westfield of College (University of London) where I am visiting during the
present academic year. It also contains some new material not yet published.

The thesis is organized as follows. The first three chapters are expository in
nature. They attempt to place the current work in context: at first historically,

but then focusing on more technical aspects. Thus, Chapter One briefly recounts
the history of KdV-like systems from the time of its inception at the end of the

last century, until its most recent avatar in two-dimensional quantum gravity
and string theory. Chapter Two illustrates how the formalism used in the main

body of the thesis fits within the conceptual framework of hamiltonian dynamical
systems on (formal) Poisson manifolds. Then in Chapter Three we describe in

detail the Lax formalism and the Adler–Gel’fand–Dickey scheme for hierarchies

of KdV-type. Its purpose is mostly motivational but also serves to illustrate the
difference between the supersymmetric and nonsupersymmetric theories.

The last four chapters comprise the main body of this work. Chapter Four
develops the supersymmetric Lax formalism. It introduces the ring of formal

superpseudodifferential operators and the associated Poisson structures. It also
introduces three supersymmetric extensions of the KP hierarchy (MRSKP, SKP2,

and JSKP) to whose study Chapters Five and Six are devoted. In Chapter Five
we find the additional symmetries of these supersymmetric KP hierarchies. We

find that the algebra of additional symmetries are in all three cases isomor-
phic to the Lie algebra of superdifferential operators (also known as SW1+∞).

In Chapter Six we discuss a new reduction of SKP2 and the relation between
MRSKP and SKP2 is clarified. Finally Chapter Seven is devoted to the study

of sKdV-B—the (so far) only integrable hierarchy to have played a role in non-
critical superstring theory. We identify the hierarchy, prove its bihamiltonian

integrability, and extend it by odd flows. We close with a discussion of new inte-

grable supersymmetrizations of the KdV-like hierarchies suggested by the study
of sKdV-B.
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