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Chapter One

INTRODUCTION AND MOTIVATION

1.1. A BRIEF HISTORY OF THE KDV EQUATION

The KdV equation is the quintessential integrable system. In the twenty-
seven years since computer experimentation began to reveal traces of its inte-
grability, the KdV equation has served as an abundant source of results and
inspiration to physicists and mathematicians in fields once as far apart as high
energy physics and algebraic geometry. In its richness of structure it is compa-
rable only to string theory, to which it is happily related. It is this very relation
that motivates the present work; but the story of the KdV equation itself takes
us back a while earlier...

THE FIRST SOLITON

1834 was a remarkable year, for it represents the inception of solitons into
recorded science. And the event could not have been more fortuitous:

‘I was observing the motion of a boat which was rapidly drawn
along a narrow channel by a pair of horses, when the boat sud-
denly stopped—not so the mass of water in the channel which it
had put in motion; it accumulated round the prow of the vessel
in a state of violent agitation, then suddenly leaving it behind,
rolled forward with great velocity, assuming the form of a large
solitary elevation, a rounded smooth and well-defined heap of
water, which continued its course along the channel apparently
without change of form or diminution of speed. I followed it on
horseback, and overtook it still rolling on at a rate of some eight
or nine miles an hour, preserving its original figure some thirty
feet long and a foot to a foot and a half in height. Its height
gradually diminished, and a after a chase of one or two miles
I lost in in the windings of the channel. Such in the month of
August 1834, was my first chance interview with that singular
and beautiful phenomenon...’
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Thus wrote John Scott-Russell ten years later in his report to the British As-
sociation for the Advancement of Science [1]. It would not be his last ‘interview’
with what are now termed solitons, for legend has it that managed managed
to consistently reproduce this phenomenon in the Union canal, by having two
horses drag a large wooden barge and then suddenly stopping.

THE KDV EQUATION

Scott-Russell’s excitement about his “Wave of Translation’” was not shared at
first by his contemporaries. In fact his discovery was treated with scepticism—if
not outright hostility—by Airy and by Stokes, who in 1849 published a ‘proof’
that such a wave could not exist (he later retracted). It was not until the 1870s
that Scott-Russell’s work became to be accepted by prominent scientists like
Boussinesq and Rayleigh, both of whom knew—at least qualitatively—what we
now know as the one-soliton solution to the KdV equation. The KdV equation
itself appeared in 1895 in a paper by Korteweg and de Vries [2] who, appar-
ently unaware of the work of Boussinesq and Rayleigh, offered their equation
as a rebuttal to the early criticisms of Airy and Stokes. Korteweg and de Vries
introduced the equation that now bears their name in order to model solitonic
behavior mathematically. Their equation reads

o = 6uu’ +u" (1.1.1)

where u = u(x,t) is a real valued function with faster than polynomial decay at
spatial infinity z — 4-co and where ’ and ~ denote derivatives with respect to
x and t respectively. Physically u is the height of a water wave in a long and
shallow canal. As it was intended from the start, the KdV equation does indeed
possess solitonic solutions. Indeed, if we make the Ansatz u(x,t) = w(x + ct),
then we find that w(z) = 3¢ sech2(%cx) which gives us a pictorial idea of what
Scott-Russell saw in the channel (see Fig. 1.1). The above solution is called the
one-soliton solution. Notice that as the wave evolves in time its form does not
change. Moreover the time evolution of the ‘peak’ of the soliton is linear with a
speed proportional to the height. The effective dynamics of one KdV soliton are
therefore (trivially) completely integrable.

EARLY EVIDENCE FOR INTEGRABILITY

An analogous solution exists for two solitons. This is not a trivial fact, be-
cause the nonlinearity of the KdV equation destroys the superposition principle;
but one can argue as follows. Since solitons decay fast at infinity and the bigger
the soliton the faster it moves, it makes sense to consider an initial configuration
(say, at large negative time) of two solitons of different sizes—the larger one to
the right of the smaller one—and sufficiently spatially separated, that we may
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Figure 1.1 The time evolution of a KdV soliton

consider them as non-interacting. As we start the clock, the two solitons start
to move independently: the fast one striving to overtake the slow one. As the
solitons get closer, the behavior of the solution becomes complicated due to the
nonlinearity; but the astonishing fact which emerged from computer simulations
in the 1960s [3], is that if one waits long enough, the original solitons reappear
with their original shapes and speeds (see Fig. 1.2). Apart from the complicated
interacting behavior when the solitons meet, the only other remnant of the non-
linearity is the following. If the evolution had been linear, then for large positive
t, the positions of the solitons would be the same as if there had been no interac-
tion; but in the nonlinear case, the positions of the solitons are actually shifted:
the larger soliton having gained some ground and the smaller soliton having lost
some. In fact a closer look at Fig. 1.2 reveals that as the solitons merge, the
larger one decreases in size and the smaller one increases in size in such a way
that the interaction looks like a classical scattering process in which the solitons
have exchanged their momentum.

It is clear that the initial configurations of the two-soliton solution are pa-
rametrized by four numbers: the positions and the heights of the two solitons
at a fixed large negative time. In fact, the effective dynamics of the two-soliton
solution are governed by a completely integrable system in a four-dimensional
phase space. The same is true for arbitrary N: there exist N-soliton solutions
to the KdV equation which are effectively described by a completely integrable
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Figure 1.2 A 2-soliton solution of the KdV equation

system in a 2/N-dimensional phase space.

THE MIURA TRANSFORMATION

Urged on by the existing numerical results, a number of people (Gardner,
Kruskal and Miura among others) started the systematic investigation of the
KdV equation as a potentially integrable system. It is clear that H3 = [u
is conserved, since the right-hand side of the KdV equation (1.1.1) is a total
derivative. Similarly, multiplying (1.1.1) by u, one can conclude that Hy = [ u?
is also conserved. By the summer of 1967 there were three more charges known,
all of which sharing the property that H, = [ p,(u) where p,(u) = u™ + - is
a polynomial in u and its spatial derivatives. That same summer, Robert Miura
(then a graduate student) was sent out to find more conserved quantities for the
KdV equation. Miura found a few more charges by hand before he discovered a
remarkable transformation [4] relating solutions of the KdV equation to solutions
of another nonlinear differential equation

b= —6v% 4+ 0", (1.1.2)

nowadays known as the modified KdV equation (mKdV). If v(z,t) is a solution
of the mKdV equation, then
u=—v* -1 (1.1.3)

is a solution of the KdV equation. This transformation was subsequently general-
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ized by Gardner, exploiting the formal Galilean invariance of the KdV equation!,
to derive an infinite number of polynomial conserved charges [5] [6].

In that same series of papers, a remarkable observation was made that was to
have profound implications in the field. If we understand the Miura transforma-
tion (1.1.3) as a Riccati equation for v and we linearize it by defining v = ¢ /4,
then u = —1)” /4. Performing a Galilean transformation with ¢ = 6 (see previ-
ous footnote) on u, we find that 1) obeys the one-dimensional time-independent
Schrodinger equation with potential —u:

= M. (1.1.4)

If we now let u evolve in time according to the KdV equation, then it makes sense
to ask how A\ and v evolve. Remarkably, it turns out that A remains constant!
In other words, the KAV flow (1.1.1) is an isospectral deformation of the
Sturm-Liouville operator 9% + u, where 9 = 9/0x.

This observation gave rise to the inverse scattering method, by which N-
soliton solutions of the KdV equation were found from scattering data [7]. It
turns out that the scattering data associated to the potential has a very simple
time evolution. To solve the KAV equation with boundary conditions u(x) one
simply solves the scattering problem for the potential —u(x), one then evolves the
scattering data, and finally one applies the inverse method to determine the new
potential. Using the inverse scattering method, Zakharov and Faddeev [8] were
the first to demonstrate that the KdV equation was completely integrable in the
sense that it possesses action-angle variable, namely the scattering data. The
inverse scattering method and its quantum counterpart has been the primary
source of the modern theory of quantum groups (see, for example, [9]).

THE KDV EQUATION AS A HAMILTONIAN SYSTEM

Parallel to these developments the hamiltonian side of the story was starting
to unfold. In [10], Gardner proved that the KdV equation could be written in
hamiltonian form relative to one of the polynomial conserved charges that had
been known for some time. In fact, relative to the following Poisson bracket in
the space of initial configurations u(z):

{u(z), u(y)}y ="z —y), (1.1.5)

and taking the conserved charge H3 = [u3 — %(u' )2 as hamiltonian, the KdV

1 One can see that the transformations v — u — %c, T — x4+ ct, t — tleave the KAV

equation (1.1.1) invariant. We call this a formal invariance, however, since it does not
preserve the boundary conditions at x — £oo.
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equation can be written in hamiltonian form:

W= {u, Hy} = (%) . (1.1.6)

Furthermore, relative to the Gardner bracket (1.1.5) all the polynomial conserved
charges H,, are in involution {H;, H;} = 0. This fact established the (formal)
integrability of the KdV equation.

There is more, however. In [11] Magri discovered that the KdV equation
could be written in hamiltonian form relative to a second bracket and relative to
a second hamiltonian. In this case the bracket is given by

{u(@), uy)}y = (30 + 200 +u') - 6(z — ) , (1.1.7)

and the hamiltonian is simply Hy = [ u?. Magri noticed that in addition to
having a flow in common, both Poisson brackets are coordinated: that is, that
any linear combination oo {—, —}; + 5 {—, —}, is again a Poisson bracket. This
condition is of course nontrivial, since the Jacobi identities are quadratic. This
bihamiltonian structure for the KdV equation implies a series of relations between
the conserved charges. In fact, for all n > 1, one has the following relation:

5Hn+1
ou

0H,

0 Su

= (30° +2u0 + ) - (1.1.8)
which for n = 2 is precisely the fact that both sides of the equation equal the KAV
equation. These relations, originally due to Lenard, can be used to recursively
compute the conserved quantities starting from the trivial one H; = f u.

It is interesting to notice that the Magri bracket is nothing but a representa-
tion of the (symmetric algebra of the) Virasoro algebra, as can be trivially seen
by assuming that the field u(z) lives on the circle and writing the induced Poisson
brackets on the modes. In fact, this simple realization lies at the heart of much
of the present research in this topic; especially in its relation with conformal field
theory and string theory.

THE HIROTA EQUATION

In 1972, Hirota introduced a remarkable trick to obtain soliton solutions to
the KdV equation. This method has since shown itself very deep, but the idea
is simple enough [12]. One introduces a potential 7 related to u as follows

2

u(z) = 2@ log 7(z) . (1.1.9)
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In terms of 7 the KdV equation (1.1.1) becomes quadratic:

/ -

=71 @ — 4" (7 =0 . (1.1.10)

This is known as the KdV equation in Hirota bilinear form and 7 is known as the
‘tau’-function. This equation may seem more complicated, but it has the nice
property that it almost linearizes the KdV equation. Notice that 7(x) = 1 is
trivially a solution: it corresponds to u(x) = 0. Suppose that we now alter this
solution by adding the exponential of an affine linear term: 7 = 1 + exp ¢(z, t)
with ¢(z,t) = ko +wt + 0. Then we find that 7 obeys Hirota’s equation (1.1.10)
provided that w = k3. Plugging this solution back into (1.1.9) we find that it is
precisely the one-soliton solution. We can try to obtain a 2-soliton solution by
adding another term 7 = 1 4 exp ¢1 + exp ¢, with ¢;(z,t) = kjx + k?t +6;. We
find that this is not a solution: the terms in exp 2¢; cancel but not the mixed
terms exp(¢1 + ¢2). We can try to cancel this term by adding yet an extra term
to 7 of the form exp(¢1 + ¢2+ ©O12), for some constant ©12. Remarkably the new
tau function

T(z,t) = 14 % 4 % 4 21102100 (1.1.11)

is an exact solution of (1.1.10) provided that

2
exp O1g = <2 J_r :z) . (1.1.12)

This goes on and one can obtain all N-soliton solutions in this fashion. The
approach of Hirota not only facilitates the description of the soliton solutions,
but it also makes contact—after the work of the Kyoto school-—with the theory
of infinite-dimensional Lie algebras. We shall comment briefly about this later
on.

1.2. THE LAX FORMALISM

LAX’S OBSERVATION

The fact that the eigenvalues of the Sturm-Liouville operator L = 0% 4 u
remain constant provided u evolves according to the KdV equation, was explained
conceptually by Peter Lax [13] by showing that the KdV equation itself could
be written in a manifestly isospectral form. If we take P = 493 + 6ud+ 3u’, then
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we can write the KdV equation in the form:

L=u=[PL. (1.2.1)

This equation is remarkable in many ways. First of all, it displays the isospectral
nature manifestly: P is a skew-hermitian operator and equation (1.2.1) can be
understood as the infinitesimal version of a unitary evolution

L(t) =U®)'L(0)U(t) (1.2.2)
with P = —U(0). But more importantly, it constitutes the ideal point from which
to generalize. First of all, one can find other operators P for which (1.2.1) makes
sense. It is clear that not every operator P will be consistent with (1.2.1), because
P must be such that its commutator with L is a zeroth order differential operator.
This is a highly restrictive fact; but nevertheless, one can find an infinite number
of such operators—a fact that is intimately linked with the complete integrability
of the KdV equation. Similarly, one can generalize this problem by considering
other Lax operators L. In fact, one can define in this way a vast number of
integrable hierarchies as isospectral deformations of a given Lax operator. For L
a differential operator of the form L = 9" 4 - - -, the resulting hierarchy is known
as the generalized nth order KdV hierarchy or simply n-KdV. We will have ample
opportunity to discuss these hierarchies in Chapter Three; but let us just mention
now the following beautiful and deep fact. The Miura transformation (1.1.3) can
be understood in terms of the Lax operator L as simply a formal factorization:
L=0>4+u=(0+v)(0—wv). This result, which appeared for the first time in
[14], has now been generalized in a variety of ways—see, for example, [15], [16],
[17], [18].

THE ADLER—GEL'FAND—DICKEY SCHEME

All the information concerning the spectrum of an operator is contained in
its resolvent. For X\ not in the spectrum of the Lax operator L = 9 +u, we define
the resolvent by R(\) = (L—\)~!. Gel'fand and Dickey, in a remarkable series of
papers [19] [20] [21] demonstrated that the polynomial conserved charges of the
KdV equation could be recovered from the asymptotic expansion (as A — 00) of
the resolvent R()); and, in doing so, introduced the extremely useful concept of
the fractional powers of L. They furthermore generalized the Gardner bracket
(1.1.5) to other KdV-type equations. This generalization now bears their name:
the first Gel’fand-Dickey bracket. Perhaps the only shortcoming of the approach
of Gel'fand and Dickey is that they treated L as an honest operator and as a
result their work was full of the unavoidable analytic subtleties. It was Adler
[22] who first noticed that their results could also be obtained in a completely
algebraic fashion if one considered L to be a formal differential operator instead.
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Adler introduced the formal inverse 9! of the derivative operator 9, which
obeys
ol f=fot—flo 24 flo3—... (1.2.3)

for consistence with the Leibniz rule 0f = f0+ f’. One is then forced to extend
the ring of differential operators to objects containing negative powers of 0. In
this ring of (formal) pseudodifferential operators, one can take the square
root of L; that is, there exists a unique operator

L1/2 — a ‘l’ vy + UQa_l + U38_2 _l_ e (124)

satisfying L'/2L1/2 = L and such that the v; are polynomials in v and its deriva-
tives. Furthermore Adler introduced a trace on the ring of formal pseudodif-
ferential operators as follows. If P = Y p;0", then Tr P = J p—1, which as the
notation suggests, annihilates commutators. In terms of the Adler trace, one can
write down all the conserved charges of the KdV equation simply as traces of
fractional powers of the Lax operator

Hy =Tr L7Y2 (1.2.5)

which are manifestly conserved since the evolution of L and of any fractional
power is given by a commutator (1.2.1). Moreover the possible operators P
in (1.2.1) defining isospectral deformations of L, can be written in terms of the
fractional powers; in particular the KAV equation is given (up to trivial rescalings
of u, x and t) by

L= 1), (1.2.6)

where the subscript 4 denotes the differential part of a pseudodifferential opera-
tor. The Adler trace would be later extended by Wodzicki to pseudodifferential
operators in arbitrary manifolds—a result of deep importance in many aspects
of noncommutative geometry.

Two other important results were also contained in [22] concerning the
hamiltonian structures of the KdV-type equations. On the one hand, the first
Gel’fand-Dickey bracket was recognized as the Kirillov-Kostant bracket in a
coadjoint orbit of the formal group of pseudodifferential operators of the form
1+ Y, a;0~—the Volterra group. This fact was independently observed by
Lebedev and Manin [23], and puts the first Gel’fand-Dickey bracket on a solid
conceptual framework. But perhaps more importantly, Adler conjectured a gen-
eralization of the Magri bracket (1.1.7), which has had a wide area of applicability
outside the confines of the KdV-type equations. The Adler map was proven to
be hamiltonian by Gel'fand and Dickey in [24] and the resulting Poisson bracket
is known as the second Gel'fand—Dickey bracket. It lies at the heart of many
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results in W-algebras and conformal field theory. Most of the work in this the-
sis is framed in one way or another in the formalism developed by Adler and
Gel’'fand-Dickey. We will therefore spend considerable time developing it in
Chapters Three and Four.

1.3. SOME IMPORTANT GENERALIZATIONS

THE KP HIERARCHY

It follows from the Lax representation for the KdV equation that one can
study the dynamical system defined by the isospectral deformations of more
general differential operators. One of the virtues of the Adler—Gel’fand—Dickey
scheme is that all these systems can be treated in parallel. The pivotal role
played by the fractional powers of the Lax operator L = 9" + - - -, and by its nth
power L/" = §+- .- in particular, suggests the existence of a universal hierarchy
containing all the other generalized KdV hierarchies. The idea is the following:
the space of differential operators of the form L = 0" + --- is in one-to-one
correspondence with the space of pseudodifferential operators A =90+, w; 0"
whose nth power is differential. Since the spaces are isomorphic, they must have
the same number of degrees of freedom and indeed the condition on A singles out
the first n w; as independent. Clearly, the limit n — oo, which is not well-defined
for L, makes perfect sense for A and corresponds to the general pseudodifferential
operator with all w; independent. The hierarchy of isospectral deformations of
such an operator was introduced by the Kyoto school in the early 1980s [25]
and is named the KP hierarchy after its first nontrivial equation—the equation
introduced in the early 1970s by Kadomtsev and Petviashvili [26] as the simplest
integrable extension of the KdV equation to 2 + 1 dimensions.

The method of Hirota to solve the KdV equation can be extended to the KP
hierarchy. It is here that the true depth of the idea reveals itself. We summarize
the main result. The 7-functions for the KP hierarchy are the points in an
infinite-dimensional Grassmannian which has a very natural description in terms
of two-dimensional quantum field theory. If one considers a complex fermion
in two-dimensions, there is a canonical way to associate a 7-function to the
orbit through the vacuum of the infinite-dimensional group G'L(co) of invertible
matrices. This group has a natural representation in terms of exponentials of
fermion bilinears. Now bosonization will map the fermionic theory to a theory
in one free boson in a way that commutes with the action of GL(c0). Thus we
have a one-to-one correspondence between the 7-functions of the KP hierarchy
and the orbit of the vacuum in a bosonic Fock space. This correspondence can
be made explicit as follows. The bosonic Fock space can be modeled as the space
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of polynomials in variables t1, ts, ... corresponding to the creation modes of the
boson—the vacuum being sent to the constant polynomial 1. To obtain other
elements in the orbit of the vacuum we must simply bosonize exponentials of
fermionic bilinears: but these are simply the vertex operators. Therefore we can
obtain solitonic solutions of KP by acting with vertex operators on the bosonic
vacuum. This accounts for the form of the two-soliton solution (1.1.11). The
Hirota bilinear form now becomes the infinite-dimensional analog of the Pliicker
embedding of a Grassmannian in complex projective space. This circle of ideas
is still very much under investigation and one can find a thorough discussion in
[27].

Finally let us mention that the KP hierarchy shares many of the properties
of the KdV-type hierarchies: integrability, bihamiltonian structure,... and lies
at the heart of the study of (infinitely-generated) W-algebras of the Woo-type,
whose role in string theory, quantum gravity, and even condensed matter physics
is beginning to unfold.

A SUPERSYMMETRIC KDV EQUATION

One of the most remarkable symmetry principles to have appeared in re-
cent times is that of supersymmetry: originally, the symmetry between bosons
and fermions. For us it would be therefore interesting to see whether the KdV-
type hierarchies admit supersymmetric extensions. A first step in this direc-
tion was taken by Kupershmidt [28] when he proposed a fermionic extension
of the KdV equation. Nevertheless his equation—its bihamiltonian integrabil-
ity notwithstanding—was not actually invariant under any supersymmetry. The
first supersymmetric extension of the KdV hierarchy appeared in the seminal
paper of Manin and Radul [29] on the supersymmetric KP hierarchy. This is
a nonlinear partial differential equation for variables u(z,t) and &(x,t), where
u(x,t) (respectively £(z,t)) is a function taking values in the even (respectively
odd) sector of an a priori infinitely-generated Grassmann algebra. The super-
symmetric KAV (sKdV) equation of Manin and Radul now reads:

i = 6uu’ + " — 3¢6¢"

. , , e (1.3.1)
E=36u +3&u+E

which reduces to the KdV equation upon putting £ = 0. The sKdV equation is
invariant under the following supersymmetry:

66 =w and du = ¢ | (1.3.2)

which squares to an infinitesimal translation 62 = 0.
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We can write the sKdV equation in a manifestly supersymmetric fashion by
going over to superspace. Superspace is the natural arena for supersymmetry:
it realizes supersymmetry geometrically in much the same way that Minkowski
spacetime realizes Poincaré transformations. The relevant superspace in this
case is (1|1)-dimensional with coordinates (z,6): 6 being the ‘fermionic’ part-
ner of z. Because #? = 0 we can expand functions in superspace—traditionally
known as superfields—as follows: U(z,0) = £(x)+ 0u(x). Supersymmetry trans-
formations are generated by the fermionic derivative ) = 0y — 00, so that
0U = 6§ — Bou = QU. There is another fermionic derivative D = 0y + 00
which is supersymmetrically covariant—that is, anticommutes with the genera-
tor @ of supersymmetry—and is hence called the supercovariant derivative. If
we adopt the convention that on a superfield U(x,0), U' = DU and Ul = piv,
then the sKdV equation (1.3.1) can be rewritten as follows

U=3Wu + U (1.3.3)

This equation is manifestly supersymmetric precisely because D is covariant,
whence if U transforms like a superfield, then so does U’.

The sKdV equation was shown by Mathieu [30] to be hamiltonian relative
to a supersymmetric analog to the Magri bracket (1.1.7), which incidentally
reproduces the N = 1 superVirasoro algebra on the modes. Its bihamiltonian
structure was found by Oevel and Popowicz [31] and independently by Figueroa-
O’Farrill, Mas, and Ramos [32], who proved that the sKdV analog of the Gardner
bracket (1.1.5) is actually nonlocal. This is one of the many idiosyncrasies of
supersymmetric integrable systems. Another idiosyncrasy is that contrary to the
nonsupersymetric case, there is no natural supersymmetric KP hierarchy which is
universal in the sense that the KP hierarchy is. There are many supersymmetric
extensions of the KP hierarchy: the SKP hierarchy of Manin-Radul [29], the
Jacobian SKP hierarchy [33] [34], and the even order SKP hierarchy or SKPs
[32], among others. They are defined in Chapter Four and their study shall be
a major theme of this thesis.

1.4. INTEGRABLE HIERARCHIES IN STRING THEORY

One hundred and fifty years after the discovery of the soliton, a different
kind of wave would roll in to the shores of theoretical physics. In 1984, Green
and Schwarz [35] discovered the now famous cancellation of anomalies in type 11
superstrings. It would take just five more years until both waves would come into
contact. Indeed, the latest incarnation of the KdV equation is in string theory.
This unexpected relation was brought about by the discovery that many of the
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Figure 1.3 A ‘quadrangulated’ surface and its dual graph

properties of certain kinds of string theories are governed by the equations of the
KdV-like hierarchies.

A major problem in the standard perturbative approach to string theory (see
[36] for a review) is that the topological expansion does not converge. Indeed, it
was proven in [37] that the genus expansion for the bosonic string partition func-
tion Z behaves as Z ~ ), (2h)!, whence it is not even Borel summable. Matrix
models were proposed to overcome this problem. The basic idea is the following.
One first discretizes the worldsheet and substitutes the topological expansion
and the integral over the metrics g by a sum over all possible triangulations:

Z/Dg—) > (1.4.1)

genera triangulations

Each triangulation has a dual graph (see Fig. 1.3), whence the sum over trian-
gulations can be substituted by a sum over the dual graphs. Remarkably the
sum over graphs can be modeled by a finite-dimensional integral over the space
of hermitian matrices. What makes this approach feasible is the discovery that
this integral (or rather its free energy) can be computed recursively and that
in the continuum limit the recursion relations are identical to those which the
bihamiltonian structure imposes on the conserved charges of the KdV hierarchy.

More precisely, the partition function of the hermitian one-matrix model
agrees in the continuum limit with a 7-function of the KdV hierarchy satisfying
an extra property known as the string equation. The string equation can be
interpreted to say that the 7-function is invariant under one of the additional
symmetries of the KP hierarchy. These conditions translate into an infinite
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set of constraints on the partition function, enabling one to solve the theory
completely—or at least up to a finite number of normalization constants. This
remarkable correspondence persists between the hermitian N-matrix model and
the (N + 1)-KdV hierarchy. This makes the study of additional symmetries of
integrable hierarchies an important problem. We will devote Chapter Five to
this theme.

Despite their success, matrix models pose two major theoretical challenges
which have remained unmet. On the one hand, they seem to describe strings
propagating in less than 1 dimension (the so-called c=1 barrier); and on the other
hand, their extension to superstrings remains elusive despite many attempts
to extend them. Nevertheless some progress has been made and at least one
supersymmetric hierarchy has already made its appearance. Part of the work
of this thesis is based in the identification of this hierarchy and in proving its
integrability. This is done in Chapter Seven.



Chapter Two

HAMILTONIAN DYNAMICS AND INTEGRABILITY

The nature of the infinite-dimensional systems on which we shall focus our
attention in this thesis is such, that they only afford some of the structure that
we have come to expect from finite-dimensional hamiltonian dynamics. The
remaining structure is nevertheless more than adequate to study these systems
and the purpose of the present chapter is to motivate the formalism in a simple
context. Departing from the familiar case of Hamilton’s equations in R?", we
will arrive at an abstract definition of a hamiltonian dynamical system. To do
so we must look closely at what is essential and what is superfluous in the usual
formulation of hamiltonian dynamics. In the end, we will reach a formalism
that is perfectly suited to the infinite-dimensional dynamical systems that we
will study in the following chapters. Also in this chapter we briefly examine the
notion of an integrable hierarchy and discuss the basics of hamiltonian reduction.

2.1. DYNAMICAL SYSTEMS ON POISSON MANIFOLDS

The usual arena of hamiltonian dynamics is symplectic geometry. Whereas
this setting usually suffices, it is by no means necessary; and for the dynamical
systems that will be the focus of this thesis, it is in fact too strong a requirement
on our ‘phase space’. The point of this section is then to extract the essential
ingredients that make up a hamiltonian dynamical system.

Roughly speaking, there are two fundamental ingredients in the hamiltonian
formulation of dynamics: one kinematical and one dynamical. The kinematical
ingredient is the Poisson bracket, which allows us to associate a vector field with
any function; and the dynamical ingredient is a choice of function (the hamil-
tonian) which via the Poisson bracket defines the time evolution. Manifolds
admitting a Poisson bracket are called Poisson manifolds, and among them
symplectic manifolds play a privileged role: they correspond to those Poisson
manifolds with a nondegenerate Poisson bracket. The nature of the dynamical
systems we will be discussing will force us to deviate from the customary in two
important aspects. Firstly, we will abandon the symplectic category and set-
tle for ‘phase spaces’ which are just Poisson manifolds. But also, we will have
to trade our traditional geometric tools for others more algebraic which will be
better suited to the dynamics on the infinite-dimensional spaces we will be con-
sidering. Poisson geometry (even of infinite-dimensional manifolds) is relatively

15
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well-understood, but for our purposes it is actually much more convenient to
simply algebraize the relevant geometric notions. In doing so it may seem that
we are leaving the ‘substantial’ and going into the formal; but this not the case
at all. Indeed, the formalism is sufficiently general to allow one to specialize
many of the results to the particular concrete situation.

Let us start with the familiar. Let us take as our phase space M = R?"
with coordinates (¢’,p;). Suppose we are given a function H on M. Call it
the hamiltonian. We can define a dynamical system starting from this data by
imposing that the time evolution be governed by Hamilton’s equations:

L oH . ol
T o ="

(2.1.1)

Introducing the Poisson bracket of any two functions f and g:
of dg  Of 0g
= - 2.1.2
.0 =% (G~ o) (212)
we can write Hamilton’s equations simply as

f={f, H}, (2.1.3)

for any function f and, in particular, for the coordinates (¢°,p;). The Poisson
bracket satisfies the following two properties. It is antisymmetric: {f, g} =
—{g, f}; and it obeys the Jacobi identity: {f, {g, h}} = {{f, g}, h} +
{9, {f, h}}. Antisymmetry is obvious from (2.1.2), whereas the Jacobi iden-
tity follows after a simple computation. Therefore the Poisson bracket defines
the structure of a Lie algebra on the functions of M. More is true, however.
Functions form a ring, and the Poisson bracket associates with every function on
M a derivation; that is, if f, g, and h are functions on M, then

{f ghy =g{f b} +{f, gth. (2.1.4)

These facts make the functions on M into a Poisson algebra. The derivation
property allows one to give a more conceptual proof of the Jacobi identity. Simply
notice that on the linear functions the Jacobi identity is obvious since the Poisson
bracket of any pair of linear functions is a constant. Then one simply uses (2.1.4)
to propagate the Jacobi identity to arbitrary functions.

Suppose that we now change coordinates to (g, p). The fundamental Pois-
son bracket of these coordinates is given by

i o i A
oz’ Ox ox' Ox ) (2.15)

Uij(x)z{:):i,:zj}:z< -
— \9¢" Opr, Ipi 9"



2.1 Dynamical Systems on Poisson Manifolds 17

It is easy to check that % transforms tensorially under a change of coordinates
2 — y'(z) and thus defines an antisymmetric bivector—that is, a rank 2 anti-
symmetric covariant tensor: U = %Ulj 0; A 0j. Furthermore, one can easily check
that 0% is nondegenerate so that its inverse (2;; exists and defines a nondegen-
erate 2-form (2 = %Qijdxi A dx? on M, called the symplectic form. The Jacobi
identities of the Poisson bracket become a differential relation on O which, when
inverted, implies that the symplectic form is closed: df) = 0. The differential
relation on the bivector U can be written very simply in terms of the Nijenhuis
bracket, in terms of which d€2 = 0 is equivalent to [0, O] = 0.

To summarize, starting with the usual coordinates (¢’,p;) and the usual
Poisson brackets, we have uncovered an underlying geometric structure: the
bivector U obeying [, U] = 0. This may seem overkill for R?" but it allows us to
do hamiltonian mechanics covariantly on any Poisson manifold M. A theorem
going back to Lie and generalized recently by Weinstein [38] says that around
each point of a Poisson manifold, once can find local coordinates (¢, p;, ¢*) such
that O has the following form:

¢ p
¢ (0 =5 0
pi|d 0 0] (2.1.6)
\0 0 0

The ¢* are called casimir functions and have vanishing Poisson brackets with
everything. Clearly, if no casimirs exist, U is nondegenerate, and we are in the
symplectic case—the coordinates (¢*, p;) being in this case the familiar canonical
coordinates. The symplectic instance of the Lie-Weinstein theorem is known as
Darboux’s theorem. It says that symplectic manifolds of the same dimension are
locally isomorphic. Comparing with riemannian geometry, it basically comes to
say that there is no symplectic curvature. The Lie-Weinstein theorem charac-
terizes the local geometry of a Poisson manifold: locally a Poisson manifold is
foliated by symplectic submanifolds; each symplectic leaf being specified uniquely
by the values that the casimirs take on it. Because the casimirs have vanishing
Poisson bracket with any function, they are constants of the motion relative to
any hamiltonian and therefore the time evolution preserves each symplectic leaf.
It may therefore seem that nothing is gained by considering dynamics on Pois-
son manifolds which are not symplectic. But there is a catch: global problems
aside, the transformation necessary to bring the coordinates of a given Poisson
manifold to the form (¢, p;, ¢*) may be very cumbersome. This will be especially
true in the integrable hierarchies with which we will be working.

There is another way to understand the Poisson structure O that will better
suit our needs. The derivation property (2.1.4) says that the to every function
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f there corresponds a vector field X ¢

Xp-g=1{f,9}, (2.1.7)

whose components in local coordinates are given by ch = 0;f. Xy is called
the hamiltonian vector field associated with f. In other words, U gives rise
to a tensorial map J : {1-forms} — {vector fields} defined by X, = —J(df).
This is enough to specify J completely since every one-form is locally a linear
combination of one-forms of the form gdf. In the non-symplectic case, this map
will fail to be an isomorphism, but nevertheless its image will be a subalgebra
of the vector fields. This important fact follows from the Jacobi identity of the
Poisson bracket and the fact that one can always construct a local basis for the
1-forms out of gradients of functions. Therefore it is enough to show that for
any two functions f and g,

Xy, Xg] = Xi5. gy - (2.1.8)

But this follows trivially from the Jacobi identity. Indeed, acting on any function
h,

[(Xp, Xg] -h=Xp-Xg-h—Xy-Xs-h
={f. {9, n}} —{g. {f, n}} (by (2.1.7))
={f.g9}.n} (Jacobi identity)
=X(r.9p I

The fact that the image of J is a Lie subalgebra of the vector fields allows
us to define a 2-form there as follows. If o and 8 are 1-forms on M, then

w(J (@), J(B)) = (J(a), B) , (2.1.9)

where (—, —) is the dual pairing between vector fields and 1-forms. Applied to
gradients df and dg, we find that w(J(df), J(dg)) = w(Xy, Xy) = {f, g}. One
can show that the Jacobi identity of the Poisson bracket implies that w is closed;
that is, that for any three 1-forms «, 5, and ~,

dw(J (@), J(B), J(7)) = 0 . (2.1.10)

Apart from the degeneracy of the Poisson brackets, there is another aspect
in which the formalism we will be using deviates from the usual one. The class of
functions that we will be working with will turn out not to form a ring. In other
words, the product of two functions will fall outside the class of functions we
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consider. This may seem at first problematic, but it turns out not to hinder the

formalism at all. Let us then summarize the necessary ingredients in the formu-

lation of hamiltonian dynamics. We will at the same time translate the relevant
geometric data into algebraic terms. The following kinematical ingredients will
be needed:
(1) a Lie algebra X corresponding to the vector fields;
(2) a representation Q¥ of X corresponding to the functions;
(3) a vector space Q' nondegenerately paired with X via (—, —), and a linear
map d : Q° — Q! (we call Q! the one-forms and those one-forms in the
image of d gradients); and
(4) a linear map J : Q! — X satisfying the following properties (such a map will
be called hamiltonian):
(a) that the image of J be a Lie subalgebra of X;
(b) that J be skewsymmetric: for all one-forms o, 3 € Qb (J(a),p) =
—(J(8),a); and

(c) that the bracket {f, g} = (J(df),dg) of two functions f,g € QU satisfy
the Jacobi identity; or, in other words, that the map Jod : Q¥ — Q! — %
be a Lie algebra morphism.

On such a structure we will then be able to define dynamics by choosing a
function H € Q° and defining the time evolution as the flow of the vector field
J(dH). Formally, we call the quintuple (X,Q° Q! J H) satisfying the above
properties a hamiltonian dynamical system.

2.2. INTEGRABILITY AND DYNAMICAL HIERARCHIES

The dynamical systems that we will focus on are rather special in that they
are completely integrable. The notion of complete integrability goes back to
Jacobi and Liouville and has been substantially generalized in recent times. Let
us start with a trivial example: the ubiquitous harmonic oscillator. Take M = R?
with coordinates (¢, p) and the standard Poisson bracket {q, p} = 1. We take
as hamiltonian the function H = %pz + %qz. The equations of motion are well
known: p = —q¢ and ¢ = p which have as solutions:

q(t) = Gcost + psint and  p(t) =pcost — gsint . (2.2.1)

The physical trajectories are circles centered at the origin and with radius R =
/@2 + p?. Antisymmetry of the Poisson bracket implies that the Hamiltonian is
conserved, and in fact we notice that on the trajectory at radius R, the hamilto-
nian obtains the value %Rz. Let us introduce polar coordinates (which are valid
away from the origin) ¢ = rcosf and p = rsinf. In terms of these coordinates
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the physical trajectories take a very simple form
r(t)=R and 0(t) =0(0) +t, (2.2.2)

while the symplectic form becomes Q2 = dp A dq = rdr AN df = dH A df. In other
words, the change of variables (¢, p) — (6, H) is a canonical transformation which
linearizes the dynamics. These coordinates are called action-angle variables.
A hamiltonian dynamical system is called (completely) integrable if it admits
action-angle variables; that is, if we can find coordinates (Hj;, 0;) relative to which
the symplectic form becomes Q = > dH; A df; and the time evolution is linear:
Hl(t) = HZ(O) and Ql(t) = 91(0) + 7.

This definition seems to suggest that integrability is an a posteriori conse-
quence of solving the dynamics; but in fact a theorem due originally to Liouville
gives us a necessary and sufficient condition for a hamiltonian dynamical sys-
tem to be completely integrable. Liouville’s theorem states the following. Let
(M, Q) be a 2n-dimensional symplectic manifold and let us define some dynamics
on M by specifying a hamiltonian function H. Then the dynamical system is
completely integrable if and only if there exist n functions H = Hy, Ho, ..., H,
whose gradients dH; are linearly independent almost everywhere? and such that
they are in involution {H;, H;} = 0; in particular, the H; are all conserved
quantities.

Liouville’s theorem brings us naturally to the concept of an integrable hier-
archy. From a purely formal point of view—that is, disregarding for a moment
the physics we are describing—any one of the functions {H;} can be used as
a hamiltonian and each of these hamiltonians defines an integrable dynamical
system with the same functions {H;} as conserved quantities. Naturally, the
physics will choose one particular hamiltonian that can be sensibly interpreted
as generating the time evolution of the system, but from a structural point of
view, there is no reason to prefer one over any other. The democratic thing
to do is then to introduce n ‘times’ ti,...,t, and define a hierarchy of flows
g—ti = {f, H;} for any function f. The involutivity of the hamiltonians imply
that the flows commute:

f  Of
ot; (9tj (9tj ot;

={f,{H:, H;}} (Jacobi identity)
=0. (involutivity)

It is meaningful to describe integrable hierarchies in the Poisson setting. Sup-
pose that (P, U) is a Poisson manifold of rank 2n, by which we mean that the

2 This is unavoidable: already in the harmonic oscillator, dH = 0 at the origin.
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generic symplectic leaf is of dimension 2n. By an integrable hierarchy we will un-
derstand a collection of n functions in involution Hy, Hs, ..., H, such that their
associated hamiltonian vector fields span an n-dimensional distribution (almost
everywhere). Since hamiltonian vector fields are tangent to the symplectic leaves,
this means that on a given symplectic leaf they give rise to an integrable hierarchy
in the sense of Liouville.

For infinite-dimensional dynamical systems the existence of action-angle vari-
ables is problematic (although for the KdV hierarchy they do exist and are given
in terms of scattering data [8]!) and one relaxes the notion of integrability by
requiring an infinite number of conserved quantities in involution or sometimes
even just an infinite number of commuting flows. This does not imply complete
integrability in the strict sense, but it is a convenient working definition in the
absence of a stronger yet still practical criterion.

A more rigorous notion of integrability for infinite-dimensional systems can
in principle be defined by analogy with the KdV hierarchy. It is proven in [13]
that every solution of the KdV hierarchy is ‘close’ (in some appropriate sense)
to an N-soliton solution, for some N. Moreover, as mentioned briefly in the first
chapter, any N-soliton solution of the KdV equation (indeed, hierarchy) can
be effectively described by a completely integrable system in a 2/N-dimensional
phase space. Therefore the union of all these finite-dimensional phase spaces
is 'dense’ in the space of solutions of the KdV hierarchy. This means that the
phase space of the KdV hierarchy is the closure (in some appropriate topology)
of an inductive limit of phase spaces of finite-dimensional completely integrable
systems.

2.3. HAMILTONIAN REDUCTION

Finally we discuss in some detail the basic notions of hamiltonian reduction.
In fact, we will only need in what follows a very particular case: the reduc-
tion induced by constraints of the second-class. The modern formulation of the
theory of constraints goes back to Dirac [39]. A dynamical system on a phase
space M, may actually only depend—via a mixture of kinematical and dynam-
ical constraints—on some subspace. The way constraints arise normally is as
follows. One usually describes a physical theory by specifying the configuration
space and the action, which is a function on the tangent bundle. It may be,
however, that this description is redundant and in fact the true physical degrees
of freedom—that is, the physical configurations—comprise only a subspace of
the full configuration space. This is always the case in gauge theories, but this
phenomenon is not restricted to them. Dirac’s treatment of constraints is purely
hamiltonian. Given a Poisson manifold M and some functions {¢;} on M with
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zero locus M, = {m € M|p;(m) = 0 Vi}, Dirac distinguishes two kinds of con-
straints: first and second class. Constraints are said to be of the first class, if
their Poisson bracket is identically zero on M,. At the other extreme we have
second-class constraints: for which the matrix {¢;, ¢;} of Poisson brackets is
nondegenerate on M,. Of course, constraints will generally come mixed and it
is something of an art to disentangle them. Fortunately, for our purposes we
will only need to talk about second-class constraints. Notice that from their
definition it follows that second-class constraints always come in pairs.

Dirac proved that if (M, ) is a Poisson manifold, then the zero locus M,
of 2k second-class constraints {¢;} inherits a symplectic structure from that
of M. Moreover he gave an explicit formula for the Poisson bracket on M,
in terms of that on M. A Poisson structure on M, is the same as a Poisson
algebra structure on its ring of functions QY(M,). Any function on M restricts
to a function on M, and quite trivially any two functions on M agree on M,
if their difference vanishes there. On the other hand, and glossing over some
regularity issues®, every function on M, extends to a function on M. In other
words, QV(My) = QO(M)/I, where I is the ideal of those functions vanishing
at M,. Clearly the constraints belong to I and in the regular case alluded to
above, they generate it. That is, the typical element of [ is a linear combination
>, fivi where f; are arbitrary functions on M. Notice, however that [ is not
a Poisson ideal. That is, the Poisson bracket of two elements of I does not lie
back in 7. In fact, far from it: {¢;, ¢;} cannot all be zero on M,, since the
matrix is nondegenerate. Therefore we cannot expect to compute brackets on
M, simply by extending functions to M, computing their bracket there, and
restricting back to M,. For this to be well-defined, the end result could not
depend on the extension, but in fact it does precisely because I is not a Poisson
ideal. The idea of Dirac was to deform the Poisson bracket on M in such a way
that the constraints would commute with everything (at least on M,). Thus one
introduces the modified bracket

{f.adp={r. 9} => _{f ¢} C7 {95, 9} (2:3.1)

Y]

where C% is the matrix inverse of Cj; = {¢;, ¢;}.* Notice that the Dirac bracket
obeys that for any function f, {f, ¢;} = 0 for all i. Therefore if we change f and
g by adding to them any arbitrary function which vanishes on M,, their bracket

3 Technically, we assume that M, is a regular embedded submanifold of M or equivalently
that 0 is a regular value of the function ® : M — R?* whose components are the constraints

i

4 This bracket is really only defined on M, since there is no guarantee that the matrix C;;
is invertible away from M,; although in practice this subtlety seldom arises.
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on M, is not altered. Therefore equation (2.3.1) induces a Poisson structure on
M,, known as the Dirac bracket.

Now, in infinite dimensions we are sometimes forced to impose an infinite
number of second-class constraints. In those cases it is usually impracticable
to write the matrix {¢;, ¢;} explicitly—let alone to compute its inverse; so we
must resort to other methods to perform the reduction. It is here that the un-
derstanding of the geometry underpinning Dirac’s theory of constraints becomes
essential.

We will see that the Dirac bracket corresponds to a particular choice of
extension of functions from M, to M; or more precisely, to a choice of writing
down gradients of functions on M, as one-forms on M. To understand this point
it we too must go back to basics.

The tangent vectors to M, are naturally embedded in the tangent space to
M restricted to M,. In other words, for every m € M,, T,,M, C T,,M in a
natural way. Indeed, since M, is the zero locus of {¢;}, X € TM is tangent
to M, if and only if X - ¢; = 0 for all <. But unlike tangent vectors, there is
no natural way to embed 1,7 M, in Ty M. This is because T, M, is defined as
the dual space of T}, M, and the dual of a subspace is not naturally a subspace
of the dual. In other words, if U C V are vector spaces, then a choice of
U* C V* corresponds exactly to a choice of complement to U in V; that is,
it V. =U®W then U* = W canonically, where ° denotes the annihilator
We={v"eV*| (vw)=0Vw e W}.

We can illustrate this with an example. Consider the standard two-sphere
S? embedded in R? by the ‘constraint’ 22 + y? + 22 = 1. In terms of spherical
coordinates (r, 0, ¢) we can consider a function on the sphere as simply a function
f(0,¢) of the angular coordinates. Its gradient is well-defined as a one-form on
the sphere, but it is not well-defined as a one-form on R3. In fact, to write it as
a one-form on R3 we must first extend the function to a function F(r,#, ) such
that F(r =1,60,¢) = f(0,¢), and then we simply take dF' (restricted to r = 1)
as the one-form corresponding to df. But this clearly depends on F' since OF/Or
is not fixed at r = 1.

In other words, a choice of complement to T),,M, in T,, M is exactly a choice
of normal vectors to M,. In the absence of any additional structure on a manifold
M, there is no preferred choice. Suppose, however, that M is given a riemannian
metric. Then we can choose as normal vectors at m € M, the orthocomplement
(T;,,M,)* relative to the metric. This is clearly the natural choice in riemannian
geometry and it has the following nice property: T7% M, = (T, M,)")° is mapped
isomorphically onto T'M, under the isomorphism T*M — T'M induced by the
metric (‘raising the index’).

In symplectic geometry—which is a closer analog to the case we are interested
in—there is no metric, but we have the next best thing: a non-degenerate 2-
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form €. Suppose then that (M, () is a symplectic manifold and that M, is a
submanifold. We can try to mimic the same construction: namely, define the
symplectic complement (7}, M,)" as those X € T}, M such that Q(X,Y) = 0 for
all Y € T,,,M,. We would then like to have a direct sum decomposition for all
m e M,

TrnM = T, My @ (T M,) ™" . (2.3.2)

Unfortunately this is not always possible and this condition defines a special
kind of submanifolds M, known as symplectic submanifolds. As a trivial
counterexample, suppose that M, is given by the zero locus of one constraint ¢.
Then the hamiltonian vector field associated to the constraint is both tangent
and symplectically normal to M,, due to the antisymmetry of the symplectic
form.

When M, is defined as the zero locus of independent constraints {¢;}, it is
easy to give an alternative characterization of condition (2.3.2). Let X; denote
the hamiltonian vector field associated to the the constraint ¢;. Then for any
vector X € T'M,

QX, X;) = (X, doi) = X - i, (2.3.3)

whence X € T'M, if and only if it is symplectically perpendicular to the X;.
In other words, TM, = (X;)*. Now condition (2.3.2) says that there is no
linear combination of the X; which is symplectically perpendicular to the Xj;
that is, that the restriction of the symplectic form to the subspace spanned by
the X; is nondegenerate. In other words, that the matrix Q(X;, X;) = {¢i, ¢;}
is invertible everywhere on M,. In other words, we recover precisely Dirac’s
definition of second-class constraints.

Under the assumption that M, is a symplectic submanifold of M, we can
then mimic the riemannian case and embed T, M, in T M as (X;)°. That is,
a € T M belongs to T)¥ M, if and only if (o, X;) = 0 for all 4; or, equivalently,
that Q(J(«), X;) = 0 for all ¢, where J : T*M — T'M is the isomorphism induced
by the symplectic form. In other words, T M, consists precisely of those 1-forms
on M which map under J to vectors tangent to M, (recall (T}, M,) = (X;)*).
Notice that this last definition also makes sense in the Poisson case, since the
Poisson structure O defines a map J from one-forms to vector fields. Of course, in
this case, due to the degeneracy of J, a is not uniquely defined by this condition,
since we can always add to it any one-form in the kernel of J.

Back to the symplectic case, the way to compute Poisson brackets is now
clear: you take any two functions on M,, you extend them to functions on
M, you project their gradients to 7, M, as defined above and then use these
projections to compute their Poisson bracket. The resulting expression should
then be independent of the extension. Let us see this in a bit more detail. Let
f and ¢ be functions in M, thought of as restrictions of functions f and ¢ on
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M. Let Xy and X, be their respective hamiltonian vector fields. Under the
decomposition (2.3.2) we can write them as

Xp=(Xyp)o+ (Xp)1 (2.3.4)

and the same for g. Since the X; span TM;" we can expand (X), in a linear
combination » . A\;X; for some functions A\; which we now determine. On the
one hand,

UX;, Xyp) = {5, f}, (2.3.5)
but also

Q(X;, Xf) = QX5 (Xp) 1)
= NQ(X;, X))

= ZM {¢j, di} (2.3.6)

Comparing the two expressions and letting C*/ denote the inverse of the matrix
{¢i, ¢j}, we can solve for the \; and write

(Xp)o=X;—> C{;, f}X; . (2.3.7)

(¥
Doing the same for g, the resulting Poisson bracket can be written as

{f.9tp= ((Xf)m(X )o)
=X, X ZQ X7, X)) CUQ(X;, X,)

={f.9}-> {f, ¢}y C7{;, g} ; (2.3.8)

i,

that is, they are simply the Dirac brackets of equation (2.3.1). Following this
geometric line of thought it is easy to show that the bracket does not depend on
the choice of constraints {¢;} used to describe M, and that it indeed obeys the
Jacobi identity: this last remark following trivially from the fact that the Poisson
bracket is defined with respect to the the pull-back of the symplectic form via the
embedding ¢ : M, — M and the fact that the exterior differentiation commutes
with pull-backs.

Let us summarize our geometric strategy to deal with second-class con-
straints. To compute the Dirac bracket of two functions in the constrained
submanifold M,, we will write them as functions on the ambient space and
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we will fix the ambiguity in their gradients in such a way, that when mapped by
J into vector fields on M, the vector fields turn out to be tangent to M,. We
then simply compute their Poisson bracket on M but with these gradients. In
some simple examples we will be able to compare with the Dirac prescription
and check that they are in agreement, but in some others this more geometric
approach will be the only way to proceed.



Chapter Three

LAX FORMALISM AND THE KP HIERARCHY

In this chapter we briefly review the Lax formalism for KdV-type equations.
This represents a nontrivial example of a dynamical system of the type defined
at the end of Section 2.1. The underlying space will be the space of formal dif-
ferential operators of the form 0" + - - - generalizing the Sturm-Liouville operator
0% +u of the KdV equation. In Section 1 we begin to set up the basic differential
calculus in this space: functions and vector fields. To define the one-forms it will
be necessary to introduce the ring of formal pseudodifferential operators, which
is done in Section 2. Also in Section 2 we turn our space into a formal Poisson
manifold via the Adler map and the associated Gel’fand-Dickey brackets. Sec-
tion 3 discusses the generalized n-KdV hierarchies and Section 4 is devoted to
the KP hierarchy. The influence of Dickey in this section is evident. A fuller
account of this topic can be found in his book [40].

3.1. CALCULUS IN THE SPACE OF LAX OPERATORS

FUNCTIONS

By a Lax operator of order n we mean a (one-dimensional) differential oper-
ator of the form

L=0"+uwd" '+ +u,, (3.1.1)

where the u; are to be thought of as either rapidly decreasing smooth functions
on the real line, smooth functions on the circle, or simply as generators of a
differential ring Ry, (or simply R if no confusion can result). Respectively, O is
to be thought of as the derivative with respect to the coordinate on the real line,
on the circle, or as the derivation on the ring R.

We let 91" denote the space of Lax operators of a fixed order n. It is clearly
an infinite-dimensional affine space modeled on the vector space of differential
operators of order n — 1 whose coefficients are differential polynomials of the wu;.
We let R™! denote this space. Then IM™ = 9" + R™ 1. We shall drop the
superscript from 2t whenever no confusion can arise.

As functions on 9 we shall take the integrals of differential polynomials of

27
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the u;. So a typical function on 9t will be of the form
FlL] = /f(U) , (3.1.2)

where f(u) is a polynomial of the u; and their derivatives, and where | means
different things depending on the context: it means integration over the real
line, integration over the circle, or simply the canonical projection R — R/JR
in the more abstract algebraic setting. This last point may seem at first a
bit confusing, but it is really very simple. Think of the case on the circle.
It is clear that the integral of a total derivative vanishes. Furthermore, if an
integral vanishes, its integrand is a total derivative. Therefore there is a one-
to-one correspondence between {functions on the circle}/{total derivatives} and
integrals. In the algebraic setup, R plays the role of the functions on the circle
and so the integrals are in one-to-one correspondence with R/OR. On a more
pragmatic level, identifying the functions with R/OR means that integration is
linear and that we can integrate by parts.

VECTOR FIELDS

Vector fields in 9 are first order deformations of the points in 9. Since
I is an affine space, the tangent space at each point can be identified with
the vector space it is modeled on, namely R"~!. Given a differential operator
A= Z?Zl ajﬁn_j € R™" ! one can define a vector field 94 on M, whose action
on a function is given by the usual

OsF[L] = d—F[L + €A (3.1.3)
de e=0
If F'is given by (3.1.2) then
n o0 8
OuF = / 3 %ag@ , (3.1.4)

i=1 k=0 8%

where the superscript (¥) means kth derivative. Integrating by parts we can
rewrite (3.1.4) as

- (*)
8AF:/ZZ(—)k (%) 0 (3.1.5)

i

&:i(—a)’f- 0 y - (3.1.6)
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Notice that acting on differential polynomials of the u; the above sums over k
are actually finite. It is easy to see that the Euler operator annihilates total
derivatives, so that & - f/ = 0. This implies that 94 in (3.1.4) is well defined
because if F' = [(f + ¢') then the expression (3.1.5) is unaltered. In other
words, d4 descends to a map in R/OR. A more precise statement is that the
derivation—also denoted 04, with a little abuse of notation—of R given by

B

=1 k=0 z

(3.1.7)

commutes with 0 and thus induces a map in the quotient R/JR.

A remark is in order. Our choice of functions does not form a ring: there
is no natural multiplication on R/JR induced from the one on R because OR is
not a multiplicative ideal. Therefore one cannot even begin to wonder whether
the vector fields act as derivations. It is possible to extend the functions in such
a way that they do form a ring, but this is an unnecessary complication which
does not enhance the formalism.

Vector fields, however, do form a Lie algebra in such a way that the functions
form a representation. Let A, B € R™ ! be tangent vectors and let 94 and dp
denote the vector fields that they define. Then one has

(04, O] = O, > (3.1.8)

where [A, B] is defined by
[A, B] = 04B — 0pA

n 9 . .
_ §:§ 2 alV) C(Lk)b§k) 9 (3.1.9)
u

i=1 j=1 k=0 j aj

3.2.  ONE-FORMS AND PSEUDODIFFERENTIAL OPERATORS

FORMAL PSEUDODIFFERENTIAL OPERATORS

To define the one-forms we have to have to introduce pseudodifferential op-
erators (¥DQ’s). We first introduce a formal inverse to 0, satisfying 00~ =
0~'0 = 1. This and the Leibniz rule imply the following multiplication law for
o1

o la=adt —do?+d07% -, (3.2.1)
for a € R any differential polynomial. That this law is correct can be easily
seen by applying d on both sides of the equation. Repeated application of this



30 Chapter Three: Lax Formalism and the KP hierarchy

relation yields the generalized Leibniz rule for any integer m

éWazE:m@%_D”Km_z+Da@W%f (3.2.2)

7!
i=0

Notice that when m > 0 the sum truncates (at m, actually) and we have the
usual Leibniz rule. Notice also that we are forced to consider formal Laurent
series in @~1. Therefore we define pseudodifferential operators as R((0~ 1)) with
multiplication given by the generalized Leibniz rule. One can check that this
multiplication is associative. We will use R as shorthand for the ring of YDO’s.
R splits as a direct sum R = R4 @ R_ where R = R[J] denotes the subring of
differential operators and R_ = 0~ ! R[[0~!]] the subring of ‘integral’ operators.
Given any WDO P we will let P, denote its projection onto R4+ and P— = P— Py
its projection onto R_.

It turns out that R4 and R_ are nondegenerately paired under a symmetric
bilinear form defined on R using the Adler trace [22]. Given a ¥YDO P =
> ey ai0' we define its residue by res P = a_; and its Adler trace by Tr P =
i res P. To be allowed to call this a trace, we actually have to show that it
annihilates commutators. This follows from the following fact: if P = ad” and
@ = bo? are two WDQ’s, then the residue of their commutator is total derivative.
More to the point,

/

ros [P, Q] _ <p(p - 1) . (1 - Q)(_Q) Ig(_)ia(i)b(p—&—q—i)) ) (323)

(p+q+1)! —
Notice that the Adler trace of a differential operator is zero, thus it does not
coincide with the standard operatorial trace. In fact, the Adler trace is the
logarithmically divergent part of the operatorial trace. That this quantity should
define a trace is not trivial: in the general case it is a result due to Dixmier [41].
With the Adler trace we can define a symmetric bilinear form on R by

(P,Q) =Tt PQ . (3.2.4)

It is clear that this bilinear form pairs R+ nondegenerately with Rs. This
fact makes (R, R4+, R—) into a Manin triple and, in particular, R_ into a Lie
bialgebra. The corresponding Lie-Poisson group is called the Volterra group and
will play an important role in what follows.
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GRADIENTS AND ONE-FORMS

Vector fields are parametrized by R™ !, which is nondegenerately paired with
R_/O"™R_. In turn, this space is in one-to-one correspondence with ¥DO'’s of

the form
X=0 o, +0 2wy 1 +---4+0 "2y . (3.2.5)

Indeed, if A ="  a;0" € R" L,

n
Tr XA = /inai : (3.2.6)
=1

Therefore we let the one-forms be parametrized by R_/0""R_.
Given a function F' on 9 its gradient is defined as the unique one-form dF
such that for any vector field d4,

OAF = (dF, A) = Tr AdF . (3.2.7)

Comparing with (3.1.5) it follows that the gradient is given by

n

- 1 OF :
I = —n+i—1-7 —n+i—1 - 92
d ;a " ;8 & f, (3.2.8)

for F=[f.
Summarizing, we have the following geometric setup in the space 9" of Lax
operators of order n:
Functions Q° = R/OR,
Vector fields X = {04]A € R" 1},
One-forms Q' = R_/0~"R_, and
a dual pairing between Q' and X given by the Adler trace of their product.

(0]

O O O

THE ADLER MAP AND GEL'FAND-DICKEY BRACKETS

According to the setup of Section 2.1, the next ingredient is the hamiltonian
map J : Q' — X defining the Poisson bracket. Based on known results about the
KdV and Boussinesq equations, Adler [22] proposed the following map (called
the Adler map)

J(X)= (LX) L—L(XL)4 , (3.2.9)

where X is a one-form. A priori J maps R_ — R4 but a closer look at the
expression reveals that 9 "R _ lies in its kernel, so that it induces a map Q' —
R.. Moreover, the image lies in R"~!. To see this notice that the RHS of (3.2.9)
can be written alternatively as L(XL)_ — (LX)_L which explicitly shows that
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it has order less than n. Hence the Adler map defines a map from one-forms
to tangent vectors. It is easy to prove that the above map is actually skew-
symmetric. This only uses the fact that since the Adler trace only pairs up R+
with R+, we have that Tr PQ = Tr Py Q- + Tr P_Q+.

The bracket

{F, G}y = Tr J(dF)dG = Tr [(LdF)+ LdG — L(dFL).dG] (3.2.10)

is therefore antisymmetric. Adler conjectured that it was Poisson and this was
proven by Gel’fand and Dickey in [24], hence its name: the second Gel’fand—
Dickey bracket. The reason for the name will be clear in a moment. We
will not reproduce here the proof of this fact. A somewhat simplified version
of the original combinatorial proof is reproduced in [40]. At least two other
proofs are known. First of all Kupershmidt and Wilson [15] noticed that this
bracket is induced by the Miura transformation as follows. Suppose that we
formally factorize the Lax operator L = (0 —wv1)(0—wv2) - -+ (0 —vy). This formal
factorization embeds the differential rings R into the differential ring S generated
by the v;. Let us define the following bracket on this ring. Let F' = [ f(v) and
G = [ g(v), and put

{F, G}M - Z/%F <§—f_>/ . (3.2.11)

This bracket is clearly Poisson since the Poisson operator is simply 0 which is
constant and hence trivially satisfies the Jacobi identity. The embedding R — S
allows us to pull this back the above bracket. By construction, the induced
bracket is Poisson; the remarkable fact is that it actually closes back into R; and
in fact, that it agrees with the second Gel'fand-Dickey bracket (3.2.10). This
fact is known as the Kupershmidt—Wilson theorem. The original proof of this
theorem is very cumbersome and Dickey [16] gave a very simple and elementary
proof. A third proof of this fact is due to Drinfel’d and Sokolov who obtain it
by hamiltonian reduction from the Kirillov—-Kostant Poisson structure (which we
define later, in the supersymmetric case) in the dual of the affine Lie algebra
A,fll_)l. Despite all these different proofs, the fact that the induced bracket should
close back into R has remained elusive until Wilson re-examined the result in
the light of differential Galois theory [42]. In a nutshell, Wilson introduces yet
another differential ring in which the {v;}, and hence the {u;}, are embedded and
in which there is a natural (yet nonlocal) Poisson structure. It turns out that the
structure is invariant under the action of SL(N) and that the {v;} generate the
differential subring of B-invariants and {u;} generate the differential subring of
SL(N)-invariants. Here By C SL(N) is the Borel subgroup of upper triangular
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matrices. Therefore the {u;} inherit a Poisson structure which is easily seen to
coincide with the second Gel’fand-Dickey bracket, whereas no such explanation
exists for the Kupershmidt—Wilson theorem simply because the the flag space
SL(N)/B+ is not a Lie group due to B4 not being a normal subgroup.

Kupershmidt and Wilson also noticed an amusing fact about this bracket.
Suppose that we shift L — L = L+ ), for ) some constant parameter and
let Jy\(X) = (LX)4+L — L(XL),. Expanding in powers of A we see that the
quadratic terms drop and we have

INX)=J(X)+A[L, X]_ . (3.2.12)
This induces a bracket
where
{F, G} =([L,dF]|, ,dG)="Tx[L, dF]|_dG (3.2.14)
is nothing but the first Gel’fand-Dickey bracket. Since for any L, J is a hamil-
tonian map, it follows that for all A, Jy is hamiltonian and that {—, —}, will

satisfy the Jacobi identity. In particular, writing the Jacobi identity as a polyno-
mial in A, all coefficients must vanish separately. The free coefficient is just the
Jacobi identity for the second Gel'fand Dickey bracket and the coefficient in A\
is similarly the Jacobi identity for the first Gel’fand-Dickey bracket. The van-
ishing of the linear coefficient implies that the two Gel’fand-Dickey brackets are
coordinated; that is, any linear combination is again a Poisson bracket. As men-
tioned in Chapter One, this is nontrivial since the Jacobi identity is quadratic and
hence contains mixed terms that are only zero under very special circumstances:
usually a symptom of integrability.

We finish this section with several interesting remarks about these brackets.
The first remark is that the first bracket can be identified with a natural bracket
on the coadjoint orbit of a formal Lie group. Notice that we can rewrite (3.2.14)
as follows:

(F,G},, = Tr[L, dF], dG
— Tr[L, dF]dG
= —TrL[dF, dG] . (3.2.15)

It was observed by Adler [22] and, independently, by Lebedev and Manin [23]
that this is nothing but the Kirillov—Kostant bracket on a coadjoint orbit of the
Volterra group. The Volterra group is the formal Lie group whose Lie algebra
is given by the integral ¥DO’s R_ under the commutator. In other words, the
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Volterra group is just G = 1+R_, and the product is induced from the associative
product in the ring of DO’s. Under the Adler trace, R4 becomes identified with
the coalgebra and the Volterra group acts in R4 by the coadjoint representation.
Pick a Lax operator L € 9" and consider its orbit Op = {¢L¢~!|¢ € G} under
the Volterra group. Then Oy, is given precisely by the affine subspace of 9"
defined by those L with the same u; as L, and the Kirillov-Kostant bracket on
it coincides with the first Gel’fand—Dickey bracket.

A second remark is that Ry = R* is also a Lie algebra under the commu-
tator and that makes R_ a Lie bialgebra and the Volterra group into a (formal)
Lie-Poisson group. This approach has been fruitfully exploited by Semenov-
Tyan-Shanskii [43] to generalize the Gel’fand—Dickey brackets to the case of an
associative algebra A = A, @ A_ with A4 subalgebras which are isotropic rela-
tive to the symmetric bilinear form associated to a trace. If we let 7+ denote the
projections onto A4 respectively, the operator r = my — m_ solves the classical
Yang—Baxter equation and allows one to define two coordinated Poisson brackets
on A which reduce to the Gel’fand-Dickey ones when A is the ring of WDO’s.
We will prove a supersymmetric version of this theorem in Chapter Four.

Finally, we mention that under the second-class constraint u; = 0, the
Gel'fand—Dickey brackets yield classical realizations of W-algebras. In fact, the
correspondence is as follows. The reduction of the Gel’fand-Dickey bracket as-
sociated to the Lax operator of order n yields the W, algebra. This is the
generalization of the fact that the Magri bracket realizes Virasoro. This corre-
spondence, first noticed by Khovanova [44], has been exploited by Fateev and
Lukyanov [45] in order to define and quantize the W,, algebras by quantizing
a deformation of the Miura transformation. Prior to the work of Fateev and
Lukyanov, the only quantum W,, algebras known were the Virasoro algebra and
the W3 algebra of Zamolodchikov, which was constructed as a solution to the
conformal bootstrap.

3.3.  GENERALIZED KDV HIERARCHIES

Finally we introduce some dynamics in the space of Lax operators, thus ful-
filling the setup of Section 2.1. In this section we will discuss the hierarchy of
isospectral flows of a differential operator L = 0" + ), u;0" . The isospectral
problem associated to a differential operator consists in determining the flows
which leave its spectrum invariant. We will be able to determine all isospectral
flows which are of Lax type. As we will see, these flows commute and are bihamil-
tonian with respect to the Gel’fand—Dickey brackets. Moreover the hamiltonians
generating these flows provide us with an infinite number of nontrivial, inde-
pendent, polynomial, conserved charges in involution, rendering the hierarchy
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(formally) integrable.

ISOSPECTRAL FLOWS OF LAX TYPE

We start by considering an arbitrary Lax operator
n
L=0"+> wd" . (3.3.1)
i=1

By arbitrary we mean that the coefficients are differentially independent or, in
other words, that they freely generate the differential ring R. By a flow we mean
a derivation 0y which commutes with 0 and such that

oL = Xn:(atui)a”—i : (3.3.2)

i=1

Suppose now that we realize the Lax operator as a differential operator acting
on smooth functions somewhere, and that ¢ is a (formal) eigenfunction with
eigenvalue \:

L-y=X\p. (3.3.3)

Then the isospectral problem associated to L consists of determining all flows
O¢ such that A = 0. In other words, applying d; to (3.3.3), we find that an
isospectral flow obeys

oL - v+ L- Oph — A&tw =0. (334)

We can obtain isospectral flows by the Lax method. Let P be another differential
operator, and define
oL=[P, L. (3.3.5)

Then defining 0y = P -, we find that 9;A = 0. However, not every differential
operator P gives rise to an isospectral flow in this fashion. From (3.3.2) we see
that J;L is a differential operator of degree n — 1, whence we must impose that
[P, L] have at most that order. Suppose that P has order m, then in general
[P, L] has order at most m+mn — 1. Demanding that it have order at most n —1
imposes m conditions on P, which has a priori m + 1 independent components.
Thus we expect that P will not be uniquely determined by its order alone.
However we notice that there is always the possibility of adding to any such P
a zeroth order operator since for any function f, [L, f] is a possible isospectral
flow. We can take care of these ‘trivial’ flows in the following fashion. For any
function ¢, the operators L and e~ ¥ Le” have the same spectrum. Furthermore,
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choosing ¢ judiciously® we can gauge away the coefficient in L of order n — 1.
Therefore we can restrict ourselves to operators L of the form

L=0"+> wd" . (3.3.6)
1=2

It is then easy to see that a differential operator P or order m gives a consistent
flow if [P, L] has order at most n — 2 which implies m + 1 conditions on the
m + 1 components of P. We will see, in fact, that there is precisely one such P
of a given order.

FRACTIONAL POWERS AND THE COMMUTANT

Let us define the subset €, of differential operators to be the set of those
differential operators P such that [P, L] is a consistent evolution equation for
the coefficients of L—in other words, [P, L] has order at most n — 1 for the
generic L or order n — 2 if u; = 0. The isospectral problem associated to L
consists in determining this set. Towards this goal it is convenient to consider
the commutant Zj, of L defined as those pseudodifferential operators commuting
with L. The next results links the commutant intimately to 2.

LEMMA 3.3.7. If A € Zp, then Ay € Qp. In fact, [Ay, L] has order at most
n—2.

PROOF. Break up A as A = AL + A_. Then since A € Zp it follows that
[Ay, L] = [L, A_]. The right-hand side is a differential operator; whereas the
left-hand side has order® at most n — 2. U

Therefore it behooves us to study the commutant Z, of L. It does not cost
anything extra to study this in a bit more generality; so we will let L be a
pseudodifferential operator. The following result is crucial:

PROPOSITION 3.3.8. Let L = 0" + --- be an otherwise arbitrary WDO. Then
there exists a unique WDO L'Y/" = 9 + ... which obeys (L'/™")* = L; and,
moreover, its coefficients are differential polynomials in the coefficients of L.

5 Of course, this choice of ¢ involves integrating u; and hence does not live in R. Neverthe-

less, the modifications to the other u; always involve derivatives of ¢ and hence belong to
R.

6 We use here the following fact: if P and Q are ¥DOQ’s of orders p and g respectively, then
their product PQ has order at most p+ ¢, and their commutator [P, @] has order p+¢—1.
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PROOF. Indeed, suppose that L is given by L = 9" + 2121 u;O" " and let
A=0+3 a;0'~*. Computing one finds that

A" = 9" +na 0"+ 00", (3.3.9)

whence, if we take a; = %ul, A" — L = O(9"2). Suppose now that ay, ..., a;_1,
differential polynomials in (the coefficients of) L, have been found so that A™ —
L = O(9"%=2). A brief calculation shows that the term of order 9"*=2 is given
by na — X — ug, where X is some differential polynomial in the u; < k and in
the a;-p—hence in the u;.. Therefore setting a; = %(uk + X)), allows to extend
the induction hypothesis one step further. It is clear that in the limit, L/™ = A

is the desired n* root. ([l

Notice that it follows from the proof that if L is a differential operator, then
the first n coefficients ay,as, ..., a, of LY/ are differentially independent. In
fact, the map sending {uy,ug,...,u,} to {ay,az,...,a,} is a differential ring
isomorphism.

The existence of the n-th root allows us to define fractional powers LF/" of
L for any k € Z, by

Lkz/n _ (Ll/n)k, for k>0,
(L=Y™)y=k for k<0 ;

where L™ = =1 4+ ... is the unique inverse to LY/" whose existence is proven
in exactly the same way as the existence of the nt voot. Tt is clear that the frac-
tional powers commute with L since they are both integer powers of LY. But,
in fact, it turns out that the fractional powers precisely generate the commutant.

ProprosiTION 3.3.10. As a vector space over the constants, Zj, is generated
by the fractional powers LF/™, for k € Z.

PROOF. Let A =Y",_  a;0" be a WDO of order m which commutes with L. We
compute [A, L] and we set each coefficient equal to zero. The term of highest
order, O(0"+™~1) is proportional to a/,, whence we deduce that a,, is a constant.
Therefore A — a,, L™/™ is a WDO of order at most m — 1 which commutes with
L. By induction we are done. 0

It follows from Lemma 3.3.7 that for all non-negative integers r, L:/n € Qr.
In fact we have the following

PROPOSITION 3.3.11. For L = 0" + --- an otherwise arbitrary WDO, € is
generated by the Lfr/n for r € N and by R. When we impose that u; = 0, then
), is generated only by the Li/n, forr=0,1,....
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PROOF. Suppose that P =>"" a;0" € Qp, for some m > 0. Then the highest
order term in [P, L] is of order 0"*™~! which, for m > 0, must vanish for
P € Qp. The coefficient is proportional to al,, whence we find that a,, is a
constant. Therefore P — amLT/ " € Qp is a differential operator of order m — 1.
Continuing in this fashion we arrive at a zeroth order operator—i.e., an element
of R—which from a previous remark is trivially in {27, as long as u; is different
from zero. Otherwise, we must demand that [P, L] have order at most n — 2,
whence only the constants in R survive. O

FLOWS AND CONSERVED CHARGES

Each differential operator in {2;, defines a flow on the space of Lax operators
as follows: '
oL = [Lj" , L] . (3.3.12)

If L is a differential operator then the flows 0, are trivial since L', = L" com-
mutes with L. The above hierarchy of flows determines the n-KdV hierarchy.
The first important property of the Lax flows is that they commute. The proof
follows by a routine calculation.

PROPOSITION 3.3.13. For all i,j € N, 0;0;L = 0;0;L. O

This means that we can introduce an infinite number of times {t1,ts,...} such
that 0; = 0/0t;.

Because the Lax flows are given in terms of commutators, we can immediately
write down conservation laws using the Adler trace. Indeed, for r € N, let

H =2Te L/ (3.3.14)

Again, if L is a differential operator, Hj, = 0 since L7 is differential and therefore
traceless. It is clear that these functions are polynomial and moreover that they

are conserved, since
OH,

ot;
where we have used that ;L = [P, L] if and only if 0,19 = [P, L], for any
fractional power q.

We will now show that they are nontrivial and independent. Independence
follows simply from a grading argument. Let us define the following grading:
[0] =1, and let us define the grading on R by demanding that [L] = n, so that
[uj] = n — 4, and that [f'] = [f] + 1 for any homogeneous element f in R. If
we further define [07!] = —1, then the ring of ¥DO’s becomes a graded ring
and hence [L"/"] = r. Therefore [Tr L'/"] = r and its gradient—which will be
computed shortly—has grade [dH,] = r — n, whence the gradients are linearly
independent.

—nqy [Lj” , L"‘/"] ~0, (3.3.15)
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From now on we will restrict L to be a differential operator. This way we
can apply the differential calculus we set up in the space 9t of Lax operators.

Let us first compute the gradient of H,. By definition, if A is any vector
field, the gradient dH, is defined by

d
TrdH, A= — Hy[L+ed]| . (3.3.16)
€ e=0

A simple exercise in the calculus developed in Section 1 yields,

dH, = L""" mod 0"R_ . (3.3.17)

BIHAMILTONIAN STRUCTURE

We are now in a position to prove that the H, generate the Lax flows relative
to the Gel’fand—Dickey brackets.
Recall that the Gel'fand-Dickey brackets are induced from the following
hamiltonian maps:
Jo(X) = (LX) L — L(XL)4 = L(XL)- — (LX)_L |
JOO(X) = [Lv X]+ 9

for any 1-form X. In particular, let us compute

Jo(dH,) = Jo(L™™ Y
S Oy A WG 5 S §
=L/ - 'L

_ [L:/", L] oL

=5 (3.3.18)

which implies that for any function F', its evolution in the ¢, direction is given
by

oF
e {H,, F}, . (3.3.19)
Similarly, oL
Joo(dHysp) = [L, L’;/”} - [L’;/”, L] = (3.3.20)
whence
gTF ={Hyn, F} - (3.3.21)

In other words, the Lax flows are bihamiltonian with respect to the two Gel’fand—
Dickey brackets—the th flow 0, being generated by H,y, and H, relative to
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the first and second brackets, respectively. The relations
Joo(dHyyy) = Jo(dH,) (3.3.22)

are known as the Lenard recursive relations for the conserved charges. In prin-
ciple, knowing H, for r =1,2,...,n — 1, one can determine all the others using
the recursion relations.

As a result of the conservation of the H,, we find that they are in involution
with respect to both Gel’fand-Dickey brackets. In other words, for all 7, j

0= %—ZZ ={H;, Hi}y = {Hjyn, Hi}, - (3.3.23)

It is not difficult to show, using the bihamiltonian structure, that the con-
served charges are in fact nontrivial, for if H; were trivial, so would the flows 0;
and 0;_p, and this can in turn be seen to imply that H;_,, is trivial. Continuing
in this fashion, we arrive at a contradiction since it is easy to see explicitly that
the first n — 1 conserved quantities Hy, Ho, ..., H,_1 are nontrivial.

In summary, we have exhibited an infinite number of nontrivial, indepen-
dent, polynomial, conserved quantities in involution relative to the bihamiltonian
structure. This proves that n-KdV is (formally) completely integrable.

3.4. THE KP HIERARCHY: A UNIVERSAL KDV HIERARCHY

We saw in the previous section that, in the systematic treatment of the
generalized KdV hierarchies, a crucial role was played by the n-th root L'/™ of
the Lax operator. This is a YDO of the form

A=0+> ad"", (3.4.1)
=1

obeying the constraint
A" =0, (3.4.2)

and such that n is the smallest natural number for which this is true. We also
saw that this constraint meant that the first n coefficients in A are differentially
independent and that, in fact, they freely generated the differential ring of the
coefficients of L. The Kadomtsev-Petviashvili (KP) hierarchy is defined as the
hierarchy of isospectral flows of a WDO A of the form (3.4.1) without imposing
the constraint (3.4.2); that is, a YDO A all whose coefficients are independent.
Similar arguments to the ones given in the last section justify the reduction
a] = 0.
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LAX FLOWS AND CONSERVED CHARGES

We are again interested in flows of Lax type; that is, generated by differential
operators Il such that
O\ = [IT, A (3.4.3)

is a consistent evolution equation. This means that the right-hand side has order
at most 0 for the unreduced operator or —1 when a; = 0. Let us call the set of
such II, Q5. We let Z) denote the commutant of A in the set of YDO’s. As in
the KAV hierarchies, there is an intimate connection between Z, and €24.

LEMMA 3.4.4. If A € Z), then AL € Q) and, in fact, [A;, A] has order at
most —1.

Proor. If [A, A] =0, then [Ay, A] = [A, A_], which has order at most —1. [J
Analogous to Proposition 3.3.10 and Proposition 3.3.11 we have the following
two results:

PROPOSITION 3.4.5. As a vector space over the constants, Z, is generated by
the powers A* of A, for k € Z. O

PROPOSITION 3.4.6. Q4 is generated by A’ for r € N and by the differential
ring Rp generated by the coefficients of A. When we impose that a; = 0, then
Qn is simply generated by A, forr =0,1,.... 0J

Until further notice we will work with the reduced KP operator where a; = 0.
Each A% € Qp defines an isospectral flow

N =[N, A] ; (3.4.7)
and, again, one can show that, analogously to Proposition 3.3.13, they commute
so that we can introduce an infinite number of times {t1,ts,...,t,} so that
0; = 8/8tl~:

PROPOSITION 3.4.8. For alli,j € N, 9;0;A = 0;0;\. O

For each i € N let us define the function h; = % Tr A’. Using the fact that the
Adler trace annihilates commutators, it follows that these obviously polynomial
quantities are conserved. They are nontrivial because res A = a1 + - —
where --- is some differential polynomial of the aj<;—and if it were a total
derivative, there would exist a differential relation between the a;, which violates
the hypothesis of their independence. Independence of the h; is proven again via
the introduction of a grading such that [0] = 1 and [a;] = ¢ such that [A] = 1.
Then [Tr A’} =i + 1 and their gradients are thus linearly independent.
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REDUCTION TO THE n-KDV HIERARCHY

The phase space of the n-KdV hierarchy is the space of Lax operators L of
order n with u; = 0. Since every such operator has a unique n™ oot of the
form L'/" = 9 + O(9~1), this space is isomorphic to the space of WDO’s A of
the form A = 0 + O(971) such that A" = 0, which is clearly a subspace of the
phase space of the KP hierarchy. Moreover, this subspace is preserved by the
KP flows. Indeed, if A obeys the evolution equation

oA ;
5 = A AL (3.4.9)
so does A™that is, oA
o [A, A" . (3.4.10)
Therefore, if A =0, then
OA™ ; n
<0ti)_:[A+’A]—:O’ (3.4.11)

since A" = A’t. Under the map A" = L, these flows are precisely the flows

OL  [.i/n

5 = [L+ ,L} (3.4.12)
of the n-KdV hierarchy. Moreover, and up to a factor n, the conservation laws
are precisely the ones of the KdV hierarchy, the ones for ¢ a multiple of n being
trivial.

Therefore we conclude that the n-KdV hierarchy is a reduction of the KP
hierarchy; or, in other words, that the KP hierarchy is a universal hierarchy for
the KdV series.

The calculus developed in Section 1 can be extended to handle the space
of pseudodifferential operators A. This is done, for example, in [40]. It turns
out that the KP hierarchy is again bihamiltonian with respect to a version of
the Gel’fand—Dickey brackets induced by an Adler-type map. In fact, in view
of the result of Semenov-Tyan-Shanskii quoted at the end of Section 1, this is
not surprising. What may be surprising is that the KP hierarchy is hamiltonian
relative to a one-parameter family of such hamiltonian structures analogous to
the second Gel’fand—Dickey bracket. This result was obtained independently by
Figueroa-O’Farrill, Mas and Ramos in [46] and by Khesin and Zakharevich [47].
It extends previous work of Radul [48] who found an infinite discrete family of
such structures. The original hamiltonian structure for the KP hierarchy was
discovered by Dickey [49].
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The Poisson structures of the KP hierarchy provide examples of infinitely-
generated W-algebras of the Wo-type. These are deformations of the algebra
Wy of area preserving diffeomorphisms on a two-dimensional phase space. These
algebras are not yet classified, but all known such algebras can be related [50] via
contractions or reductions to the one-parameter family of hamiltonian structures
for the KP hierarchy discovered in [46] and [47]. W.o-type algebras have started
to appear naturally in physical problems like the quantum Hall effect.

DRESSING TRANSFORMATIONS

The KP hierarchy can be understood as a dynamical system on a formal Lie
group. Let G denote the formal Lie group of WDO’s of the form 1 + 3. w;d".
We don’t take the w; to be elements of R for reasons that will become obvious
in a moment, but rather in some extension. Let A be a WDO of the form 0 +
> isq @017 Tt is not hard to prove that provided that we allow ourselves to
formally integrate the a;, we can undress A as follows:

A= pdgpt for some ¢ € G . (3.4.13)

In fact, ¢ is unique up to multiplication on the right by an element of G with
constant coefficients. We can fix this ambiguity by demanding homogeneity of
¢ and demanding that the only constants have degree zero. We can now lift the
KP flows via (3.4.13) to flows on the Volterra group G. The following results
after a trivial computation:

PROPOSITION 3.4.14. The flows

_ @ — n  —1
06 = 5 = ~(60"6™) 0
induce via (3.4.13) the flows (3.4.7). O

It is amusing and moreover practical when we consider the additional sym-
metries in Chapter Five, to understand these flows in a different way. Let us
extend the ring of WDO’s by the derivations 9, of (3.4.7) in such a way that
00, = 0p0. Then consider the trivial relation [0, — 0", ] = 0. If we dress this
relation with ¢ we recover the flows in Proposition 3.4.14. We will exploit this
approach to the KP hierarchy and to its supersymmetric extensions in Chapter
Five when we discuss the algebra of additional symmetries.
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SUPERSYMMETRIC INTEGRABLE HIERARCHIES

We now start the discussion of supersymmetric integrable hierarchies. Just as
in the nonsupersymmetric case we need to develop some formalism to handle the
infinite-dimensional spaces of Lax operators. As before the arena will be the ring
of formal superpseudodifferential operators SWDO’s. We discuss them in Section
1. After defining and reviewing the basic properties of this ring we discuss the
formal geometry in the space of Lax operators and we prove that this space can be
given the structure of a Poisson manifold relative to the supersymmetric version
of the Adler map. The proof of this fact is done in somewhat more generality.
It is the supersymmetric analogue of a theorem of Semenov-Tyan-Shanskii, and
we believe that it appears here for the first time. In Section 2 we discuss the
various supersymmetric extensions of the KP hierarchy and we set the stage for
the study of their additional symmetries in the following chapter. Most of the
material in this chapter follows the series of papers [29], [33], [51], [32], and
[52].

4.1. SUPERSYMMETRIC LAX FORMALISM

PSEUDODIFFERENTIAL OPERATORS IN SUPERSPACE

Let k be an arbitrary field of characteristic zero and let S = Sy @ S denote
a Zg-graded ring over k. Let S be moreover endowed with an odd derivation D.
Then D? is an even derivation which we will call 9. We will think of S as our
function space. As an example we can take S to be the ring

[z, 0]] = K[[z]] & K[[z]]0 (4.1.1)

of formal power series in an even variable x and an odd variable 6, satisfying
20 = Oz and 0> = 0. The Zs-grading is defined by putting |z| = 0 and |0] = 1,
and the odd derivation is given by D = Jy 4+ 00, where 9 = 9/0z. When we
come to discuss supersymmetric hierarchies, we will take S to be the differential
ring generated by some superfields U; € k[[x, 0]].

In any case, the odd derivation D obeys the supersymmetric analog of the

44
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Leibniz rule

D(ab) = D(a)b+ (=)%laD(b) | (4.1.2)

where @ is a homogeneous element of S of Zs-degree |a| and |D| = 1. We
further define the ring of supersymmetric pseudodifferential operators (SYDO)
with coefficients in S

S=5((p7h) = {P =Y wp

i>>—00

T € S} . (4.1.3)

The ring of SUYDQO’s can be given the structure of a superalgebra using the
generalized Leibniz rule

—1

where a is a homogeneous element of S and [ kli Z] are the so-called superbinomial
coefficients given by

L 0 for i < 0or (k,7) = (0,1) mod 2;
k
{l{:—i] - <[L%Z]> for i > 0 and (k,4) #Z (0,1) mod 2.

2

The generalized Leibniz rule follows from the one for 0 (given in (3.2.2)) by
taking D?* = 9% and D?**! = 9*D. Since the Zy-grading gets induced here we
have that S = Sg & S where

30 = So { Z CLZD ’ |a2i| =0 ,|a22'+1| = 1} s (4.1.5)
1>—00
and

51 Sl { Z CLZD L ‘CL21‘| =1 ,|a2¢+1| = O} , (4.1.6)

1>>—00

and we have thus defined the notion of an even (respectively odd) S¥DO.
In the case S = k[[x,0]] or some freely-generated subring, let us remark the
following fact:

S(D™H) = S((071) @ S((971)p - (4.1.7)

Indeed, on the one hand we clearly have S((0~1))®S((071))9 C S((D~1)) since
=0 and 09 = D — #D?. On the other hand any S¥DO can be written in the
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following manner:
Z CLZ'Di — Z CLQZ'D% + Z a2i+1D2i+1

= a0+ azi110"(0p + 00)

= Z (agi -+ a2i+19) 8Z -+ Z azi_lalag , (4.1.8)
so that we have also S((D~1)) c S((071)) @ S((071))0y.

In general it is important to distinguish in the ring of SWDQO’s the subring
of supersymmetric differential operators (SDOP’s)

S;=SD =S Y aD'a €S, (4.1.9)
0<i<k oo
with respect to which we have the splitting
S=85,05_, (4.1.10)
where -
S_=D1's[[DY) = {Z a; D"
i=1

denotes the integral SUYDO’s. If P € § is any SWDO we shall denote by Py its
projection onto S+ along S+.

The ring S of SWDO’s can be made into a filtered associative k-algebra if we
define the space supersymmetric pseudodifferential operators of order n by

a; € S} (4.1.11)

7

S = {P:ZaiDi € S[D]

ord P < n} ) (4.1.12)

where we say that ord P = n if a¢; = 0 for all ¢ > n and a,, # 0. We have then
S"c 8™ and S = U,zS" (4.1.13)
and under the multiplication SP x S — SPT4 . Moreover defining a bracket
[]:8P x 81— Spta (4.1.14)

via the graded commutator [AB] = AB — (=)IBIBA, S becomes a Lie super-
algebra.
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Let us end this discussion on the ring of SWDQO’s by introducing the super-
symmetric analog of the Adler trace. If P = ), a; D, we define its noncom-
mutative super-residue by sres P = a_j. In order to define the supertrace we
need to introduce a notion of integration. As in Section 3.1 this can be de-
fined abstractly as the canonical projection [ : .S — S/DS, which simply means
dropping the perfect derivatives. In the presence of a more explicit realization
for S, say as a subring of k[[z, #]], we can make the notion of integration more
concrete by considering the Berezinian. For any homogeneous differential poly-
nomial of {U; = u; + 0v;}, f(U) = a(u,v) + 0b(u,v), the Berezinian is defined
by [5 f(U) = [b(u,v). For such rings S, the only difference between the two
notions of integration consists in the fact that the abstract integration is an even
operation, whereas the Berezinian has a Zo-degree of one. In any case the Adler
supertrace is defined by

Str:/osres : (4.1.15)

It is a straightforward computation to show that, analogously to (3.2.3),
the super-residue of a graded commutator is a perfect D derivative, so that
Str[A, B] = 0, for two S¥DO’s A and B.

GEOMETRY OF THE SPACE OF LAX OPERATORS

One of the central objects in our formalism is the space of supersymmetric
Lax operators of degree n, defined by

m, = {L:D"+ZU¢D"‘i Ui € S,|U;| =i mod 2} : (4.1.16)
i=1

(We shall drop the subscript n whenever no confusion can arise.) Given any
L € 9t C S one can define Sy, the differential subring generated by the U;’s which
will obviously induce the corresponding subrings S[D] € S[D] and Sy [D71]] C
S[[D71]]. 971 is an infinite-dimensional affine space modeled on the vector space
S 1 of SUDO’s of order n — 1. Our aim is to endow this space with a Poisson
structure. Using the formalism in Sections 3.1-2 as a guide, we will define Poisson
brackets on functions of the form:

FlL) = /Bf(U) , (4.1.17)

where f(U) is a homogeneous differential polynomial of the U’s and [, p is the
previously defined Berezinian. It is worth remarking that whereas Sy, is a graded
supercommutative algebra, DSy, is not an ideal and hence the multiplication in
St, does not get induced in the quotient. This means, in particular, that it will
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not make sense to demand of our Poisson brackets to satisfy the usual derivation
property but this, fortunately, will not affect the formalism.

The tangent space T to 9 at the point L is isomorphic to the infinitesimal
deformations of L, which are pseudodifferential operators of order at most n — 1.
In other words the tangent space is isomorphic to 8"~ ! itself, namely

T M = {A = iAiD”_i

A; € S)|A;il = |A| + n —imod 2} : (4.1.18)
i=1

Then to every tangent vector A € Tr9% one can associate a vector field D4
whose action on any f € Sy, is defined by

Daf= S f (Ui + e

e=0

i=1 k:O Z 8UH h

where we do not impose a priori that € be even; in other words, |L| and | A| need
not agree. A straightforward computation shows us that

DuD = (=) pp, . (4.1.20)

Notice that Dy : S;, — Sp, induces a map—also denoted D4 with some
abuse of notation—Dy : S,/DSy, — S/DSy, given by Dy [ f = [ Daf. More
explicitly if we denote F[L] = [ f, then the vector field D defined by A is
given by

DyF = |A|+”/ ZAké’k 1, (4.1.21)
where we have introduced the Euler operators
— 0
— A\ |Ugliti(i4+1)/2 i
& Z( ) D el (4.1.22)
1=0 k

with U ,LZ] = D'Uy,. One can check that Dy is well defined. But in this case since
S, /DSy, is no longer a superalgebra, D 4 is no longer a derivation.

We expect the cotangent space 179 to 9 at L to be defined as the dual
space of Tp9N. In order to see this we introduce a dual pairing in S given by

< A B>=StrAB, (4.1.23)

under which S[D] and D~1S[[D~1]] are maximally isotropic spaces and nonde-
generately paired with each other. Indeed, if we take X = >, D 1X, e S_
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and A = Zz;é AD* € S, their pairing is given by

Str AX = (—)XH1 / VAL Xy (4.1.24)
B o

Hence the tangent space T 90 is nondegenerately paired (via the pairing defined
n (4.1.23)) with the quotient space S/D™"S_ and therefore we have

TiM=S/D"S_ . (4.1.25)

A generic element here will be then an integral operator X € S_ of the form
X = ZZ;(% D~*=1X, and, with a little abuse of notation, we also let X denote
the one-form it gives rise to at L. Thus if X and A are as above, the pairing
between the vector field D4 and the one-form X is given by

(Dy, X) = (=) AFXEntl gt Ax = ()4l / VAL X, . (4.1.26)
Bi—o

The strange choice of signs has been made to avoid undesirable signs later on.
Given a function F' = [, f we define its gradient dF' by (Da,dF) = DuF
whence, comparing with (4.1.21), yields

n—1

dF = (=)FD g f . (4.1.27)

k=0

Thus, the gradient of a function is a one-form as expected.
To define a Poisson bracket we need a hamiltonian map J : T79 — T, 9N.
Given any two functions F' and G, their Poisson bracket {F', G} is defined by

{F. G} = Dyar\G = (Dyary, dG) = (—)/HFIHCEHTL g4 j(dF)dG
(4.1.28)
J is hamiltonian if and only if this obeys the appropriate (anti)symmetry prop-
erties and the Jacobi identity.
If L is a superdifferential operator, the supersymmetric analogue of the Adler
map J : 79 — TN given by

J(X)=(LX)4L — L(XL)y = L(XL)_ — (LX)_L (4.1.29)

was shown in [18] to be hamiltonian as a corollary of a supersymmetric version
of the Kupershmidt—Wilson theorem. In other words, what was shown was that
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J is induced from a much simpler hamiltonian map in a different set of variables
®; defined by the formal factorization L = (D — ®,)(D — &p_q)--- (D — $q).
The fundamental Poisson bracket in these variables is given by

{@:(X), @j(Y)} = (=)0 D3(X —Y) (4.1.30)

where, if X = (z,0) and Y = (y,w), then § (X —Y) = §(z — y)(0 — w). The
change of variables from the Uj to the ®; is a supersymmetric version of the Miura
transformation. This factorization depends crucially on L being differential.
When L is a pseudodifferential operator, there is no known analogue of the Miura
transformation even in the nonsupersymmetric case. Many of the hierarchies we
will consider, however, will be defined as isospectral deformations of a suitable
class of SWDQ'’s for which we will need to prove the hamiltonian nature of the
corresponding Adler map. Therefore it prompts us to find a proof that does
not rely on the Kupershmidt—Wilson theorem. Again for L differential, this was
proven in [51] in a combinatorial fashion. In the next section we will give a
more general proof which is valid for a variety of algebraic situations and not
just for superpseudodifferential operators. This is the supersymmetric analogue
of a theorem due originally to Semenov-Tyan-Shanskii.

4.2. THE HAMILTONIAN PROPERTY OF THE ALGEBRAIC ADLER MAP

Let g be an associative superalgebra over a field k of zero characteristic and
suppose that it decomposes as the vector space direct sum of two subsuperal-
gebras g = g+ @ g—. In other words, g is a Zo-graded vector space such that
there is an associative multiplication which respects the grading and g+ is a
graded subspaces which is closed under the multiplication. From now on we will
simply call g an algebra and speak of gi as a subalgebra. Given any element
X € g we denote by X its projection to g+ along g+. Suppose further than we
have a nondegenerate supertrace form Str : g — k inducing a supersymmetric
bilinear form (X,Y) = Str XY which is maximally split; that is, such that the
subalgebras g+ are maximally isotropic; in other words, Str XYy = 0.

Choose a homogeneous element L € g and define the generalized Adler map
J:g—gas

J(X)=(LX)yL—L(XL)y =L(XL)_ — (LX)_L. (4.2.1)
We can view this as an infinitesimal deformation 0xL = J(X). More geometri-

cally, however, we can view J(X) as a vector field tangent to g at L as follows.
Since g is a linear space, we can identify its tangent and cotangent spaces with
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the algebra itself and, moreover, the dual pairing between the tangent and cotan-
gent spaces is given by the trace form. Then J can be interpreted as a way to
assign vector fields to one-forms. Notice, that the parity of the vector field dx
is not necessarily the parity of X, but rather it is the sum of the parities of X
and L. Let us then introduce the following notation: we will denote by |X| the
parity of X and by |X| = |X| + |L|, where we of course sum modulo 2. We
furthermore use the abbreviation € = |L|. We continue introducing conventions.
If B is a bilinear form on g we shall say that it is s-skewsymmetric if

B(X,Y) = —(—)XI¥IBy, X) , (4.2.2)

for any two homogeneous elements X and Y. This will turn out to be the natural
notion of skewsymmetry in the Zs-graded case. If X,Y,Z are homogeneous
elements of g and f: (X,Y, Z) — f(X,Y, Z) is any function (perhaps g-valued),
we define the Zo graded version of cyclic and signed permutations:

— N\XI(YT+2])
ngf<X,KZ>_f<X,Y,Z>+< WD £ (v, 2, X)

+ (AXHYD £(7, X, Y)
S rx,v,72)= C (f(X,Y,Z)—(—)|Y||Z|f(X,Z,Y)>.

X\Y,Z XY, Z

The first thing we prove is that the vector fields obtained by J close under
the Lie bracket or, in terms of the infinitesimal deformations dx, that they too
form a closed algebra under the (graded)commutator. It is clear that by linearity
we can restrict ourselves to homogeneous X.

LEMMA 4.2.3. For all X, Y € g, independent of L,
[0x, 0y] =0ix v
where [X , Y]} is given, modulo the kernel of J, by
X, Y]} = X(LY)_ — (XL),Y — ()X & v) . (4.2.4)

PRrROOF. Using that dx L = J(X), what we want to show is equivalent to

dx (V) = ()X IWVlgy g (x) = J(1X, YT}) - (4.2.5)
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The LHS of this equation can be expanded to

(JXOY) o L+ () XVILY) (X)) = J(X)(Y L)y
— ()WL X))y = (-)FIV(X  v)
= (LX)+ LY )+ L = (L(X L)Y ) L+ (=) XLy ) (LX) L
— ()WL) L(X L)y — (LX) LY L)y —(—)*WVIL(Y (LX) L)y

+ (DMLY L(X L) )1+ LXL) (Y L)y — (- V(X & Y)
= (LX(LY)-)4+L — (L(XL)1Y)4 L+ LIX(LY )+ L)+
— L(XL)-YL) — (-)FIM(x & v),

'

where the underbraced terms cancel under X < Y and we notice that

(LX)+LY )4+ L = (LX) 4 (LY )+ L = (LX(LY)-)+L
LXL)4(YL)y — L(XL(YL)4)4 = —L((XL)-Y L)y

Moreover since

(LX(LY)_)+ L+ L(X(LY)4+ L)+ = J(X(LY)_) + L(XLY L),
(L(XL)4Y)4+L + L(XL)_YL)y = J(XL).Y)+ L(XLY L), ,

we can rewrite the LHS of (4.2.5) as
JX(LY)- = (XL)yY) — ()X V(X & v)

proving thus the lemma. U
If X and Y are allowed to depend on the point L—as they very well could,
under their identification with one-forms on g—we would incur in terms of the
form (=)XlEJ(6xY) — (-)XIVI(X & V) in the LHS of (4.2.5). These terms
clearly go along for the ride and all they do is modify the bracket [X , Y]} . This
modification, though, is important; for suppose that one asks oneself whether
[—, —]7 is a Lie bracket. It is clearly s-skewsymmetric, so that all we need to
check is the Jacobi identity. From the definition, [dx , dy] = (5[ny]2 and the
fact that the commutator on the LHS satisfies the Jacobi identity trivially, we
expect that
Jacobir(X.Y,2)= C [X,[v,Z]}]; =0. (4.2.6)
But in computing the nested [—, —]z brackets, we notice that even if X, Y, and
Z do not depend on L, [Y', Z]} does, so we need to include the terms dx [V, Z]].
These terms are indeed crucial to check the Jacobi identity for [—, —]7, as we
now show.
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PROPOSITION 4.2.7. The bracket
X, V] = ()oY + X(Ly) - — (XL)4Y = (-)F V(X & v)
satisfies the Jacobi identity.

ProOOF. Let X,Y,Z € g be homogeneous. We will show that (4.2.6) holds. For
simplicity we work under the assumption that X, Y, Z are L-independent so that
we have no terms of the form dxY. The general case is no harder to prove. By
definition,

~(XL)2Y(LZ)- + (XL); (Y L)+ Z — () X0V 1417
+(—)XIVH2D (v Ly L Zz(LX) — + (—)XIYHIZ]
—()XIY 2D (v L), zL) X — (—)Y11Z

=
T
XN

Also by definition,

ox [V, 215 = (O (1) 2) - = (XM (v (X)) 2 = () Wy  2),

which we choose to write as (—)XIV] times

Y((LX)4+LZ)- =Y (L(XL)+Z)- — (Y(LX)4+L)+Z o
+(VL(XL) )+ Z — (=) Py & 7).

Therefore we can write

Jacobiy (XY, Z) = X§Z [(—)|X||Y|Y((LX)+LZ)_ — (¥ IVly(L(xL), Z)-
—(XMIY (LX) 4 2)+ 2 + ()XY LX) 4)+ 2 + X (LY (LZ)-)-

“X(L(YL)4+Z)- — (XL).Y(LZ)- +(XL)4 (Y L)1 Z—

S

()XY HZD Yy (L2)_ (LX) - + (—)XIWVHZD (v Z(LX) -

-~

+H(=) XV (v (L2) L) X — (- 2Dy L) zL), X | |

where the underbraced terms cancel after taking into account the signed permu-
tations. Now we notice that

S —(XL)Y(Lz)- + ()XW (v L), 2(LX)- =0,

XY, Z
(P, X E2))- - OPTEIYL2) (10~ = 3, X(@N)+L2)-,
and
S (XL Z+(NMYLXD) ) Z= S ~(XD)-YL).Z.

XY, Z XY,z
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We obtain in this fashion that

Jacobir (X,Y, Z)

= X§,7Z<X<LY>+L>+Z ~ ((XL)_YL)4Z + (X(LY)_L)+Z — (XL)}YL), Z ,

which after a minor rearrangement is easily seen to vanish. 0J

We now define a bilinear form on the image of J as follows:
w(J(X), J(Y)) = ()XY et g0 7(xX)Y (4.2.8)

LEMMA 4.2.9. w is s-skewsymmetric.

PROOF. This is a simple computation using the definition (4.2.1) of the Adler
map and the isotropy of g.. O

Hence under the identification of J(X) as a vector fields, w is to be interpreted
as a two-form; only that it is only defined on those vector fields in the image of
J. In fact, if X were the gradient of a function F': g — k, then J(dF') would be
the hamiltonian vector field associated to the function and w(J(dF), J(dG)) =
{F, G} would be the Poisson bracket associated to J. By Lemma 4.2.9 this
bracket is s-skewsymmetric, hence to prove that J is a hamiltonian map, it is
equivalent to prove that this bracket obeys the Jacobi identity. This is in turn
equivalent to the two-form w defined on Im J being closed. This condition makes
sense precisely because of Lemma 4.2.3.

For X,Y,Z € g homogeneous, we define the exterior derivative of w as the
following three-form on the image of J:

dw(J(X),J(V),J(2) = € (5xw(J(Y),J(2)) = w(J(X, Y]}),](2))) .

XY, Z
(4.2.10)
We now have the following:

LEMMA 4.2.11. For any homogeneous functions F,G, H,

dw(J(dF), J(dG), J(dH)) = — " d(C;dH (F,{G, H}}
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PROOF. Because of (4.2.10), (4.2.8) and the definition of the bracket we have

dw(J(dF), J(dG), J(dH))

IdF#%’dH oar {G, H} = Ojar ac; H

:dF7d(é:7dH {F {G, H}} — [0ar , dac] H
= ipigan o AG HY = 0ap (G H )+ ()Gl 5.0{G, H}
T AFdC.dH {(FAG. HY}y —{F {G, B}y + ()P a (F, 1Y)
T dF,d(é:,dH 4G, H
where we have used that |F| = |[dF| and the definition of the gradient. O

Before getting into the proof of dw = 0, let us pause for a moment to mention
a curious fact. Suppose that X and Y were independent of L. Then,

w(J(X),J(V)) = (=) XY=+ s0 g (X)y
_ (_)IXI+IYI+E+1% StrL[X, Y]} | (4.2.12)

which is reminiscent of the Kirillov—Kostant Poisson structure on the dual of a
Lie algebra.

Let us discuss this briefly. Suppose that b is a Lie algebra and h* its dual.
This is a linear space whose tangent space can be identified naturally with itself
and its cotangent space with the algebra . Therefore one can identify one-forms
with elements of the algebra. In particular, if F' is any function on h*, its gradient
dF(L) at a point L € h* can be identified with an element of the algebra. The
Kirillov—Kostant bracket of two functions F' and G at the point L is defined by

(F,GY(L) = (L,[dF , dG)) . (4.2.13)

If, as in our case, h has a nondegenerate trace form, we can identify b and b*,
and then the Kirillov—Kostant bracket (4.2.13) becomes simply

{F, G} (L) = (m)FHIGHH gt L [dF | dG) (4.2.14)

which is to be compared with (4.2.12). The Jacobi identity of the bracket (4.2.13)
follows from the Jacobi identity for the Lie bracket in h. Of course, we do not
quite have the Lie bracket in b but rather a modified bracket which nevertheless
does obey Jacobi. In fact, we can think of our modified bracket as the linearized
Poisson bracket at the point L. Either from this analogy or from our experience
with Poisson manifolds, we should expect that the following holds.
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THEOREM 4.2.15. For all X,Y, Z, independent of L,

dw(J(X), J(Y),J(Z)) =0 . (4.2.16)
PRrROOF. By definition

dw(J(X), J(Y), J(Z)) = X(;Z(—)IX HIYIHZI e (Str g (X, V)5 Z — Stréx J(Y) Z)

_ ANX | Z e+ 14+ XY
XEZ( ) Sy Str J(X)Z

- _ X(;Z(_)IX’I+IZI+E+1+IX’|(IY|+|Z|)5Y Str J(Z)X

_ A\IXHY |+ Z | 4e+1
XEZ( ) Stréx J(Y)Z ,

where we have used the antisymmetry of w. Comparing the first and the last
line we find that

dw(J(X), J(Y), J(Z)) = XEZ(—)IX Y2+ (XY DIZI St g (2)[ X, Y

— XEZ(_)(IXHIYHIZI)(EH)% Str[X, Y5 J(Z) .

Therefore all we have to prove is that

ng Str[X,Y]5J(Z) =0 . (4.2.17)

We use now the fact that for all W, Z

StrWJ(Z)

S () IR st LW, 217 — ()W Fbw Z 4 ()W 25w

In our case W = [X,Y]} so that dyZ = 0 but not 6zW which must be taken
into account. Using Proposition 4.2.7 we rewrite (4.2.17) simply as

210X+ [+e) .
ng( ) Str Loy [X,Y]E =0 , (4.2.18)
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which we proceed to prove.

C () AXHY o) 8 L5, [X, YT

XY, Z
= S OIS S () KIZ(LX (1(2)) - = L(X7(2))4Y)
= X§7 Str[LX((LY)4+LZ)— — LX(L(YL)+Z)_ — L(X(LY) L)+ Z
+ L(XL(YL)+Z)+]
= X7§/7Z Str[(LX)(LY) LZ — (LX)+LYLZ + L(XL(Y L)4) . Z]
= X§/7Z Str[—(LX)(LY)_LZ 4 (=) WXV 2D x 1y L), (ZL)]
= Str(—LXLYLZ + (=) XHYHZD x 1y Lz0) — (Y12 vy & 2)
which clearly vanishes by cyclicity of the trace. 0

We mention that in the last step of the above proof we have used the follow-
ing:

LEMMA 4.2.19. For any A, B,C € g, A(l;(} Str Ay B_C = Str ABC.

PrROOF. We expand Str ABC' by writing each A, B, C' explicitly into its + and
— projections. Using the fact that g+ are isotropic subalgebras, we find that of
the eight possible terms only six survive. Using the s-cyclicity of the supertrace,
these can be easily seen to rearrange themselves into:

C stra.B.C. O
A,B,C

A remark is in order. We could restrict ourselves to X, Y, and Z which do
not depend on L since the above result is a statement at a point. In terms of
Poisson brackets this is simply the fact that the gradient of any function can be
substituted at a point by the gradient of a linear function in the proof of the
Jacobi identity. Had we taken general X, Y, and Z we would have incurred
in terms of the form dxY which again would have been seen to cancel. The
sceptical reader should verify this her/himself.

Finally we mention a corollary of the above theorem. Suppose that g has an
identity element—which represents no loss of generality since every associative
algebra can be augmented to a unital algebra. Then we can deform the Adler
map by shifting L — L + X for some scalar A assumed to be of the same parity
as L. Then we find Jy(X) = J(X) + A (X), where

Joo(X) =L, X], —[L, X{] , (4.2.20)

where in the above graded commutators the parity of X is |X|. Then the bracket
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defined by J obeys the Jacobi identity and is, moreover, coordinated to the
bracket coming from the unperturbed Adler map. If we try to write this new
bracket in Kirillov—Kostant form (cf. (4.2.13)) we find that the Lie bracket from
which it arises is

(X, Y], =[R(X),Y]|+[X,RY)] , (4.2.21)

where R : g — g is defined by R(X) = X_ — X;. It is an easy exercise to verify
that this bracket does indeed satisfy the Jacobi identity. This makes R into a
classical r-matrix. Notice also that this new bracket [—, —|5 is (up to a factor
of 2) the one obtained by deforming [—, —]; by L — L+ .

We can now descend from the abstract into the concrete applications we have
in mind. In particular, we can take g to be the algebra of SUDQO’s with the usual
split into differential and integral operators and the supertrace being given by
the Adler supertrace (4.1.15). Then the Adler map defines a Poisson bracket
at all points L € g; that is, for any S¥DO. Restricting ourselves to different
submanifolds of g—for example, the affine subspaces 9t,—the Adler map induces
a Poisson bracket in each one. All these spaces have the property that they can be
decomposed as orbits of the formal supergroup associated to the Lie superalgebra
of integral operators. For example, if L € 9, is a superdifferential operator of the
form D"+ 3", U; D" and if g = 1+ > o0, B;D ™" is an element of the formal
superVolterra group, gLg~! € M,,. In fact, if n is even, the orbit is determined
by the invariants U; and Us; whereas for n odd, both U; and Us; transform.
As already mentioned, the first Gel’fand—Dickey bracket is simply the Kirillov—
Kostant bracket on the orbit. As we have now seen the second Gel’fand—Dickey
bracket is also of the Kirillov—Kostant type, but with a different Lie bracket. It
is an interesting problem to elucidate this relationship further. In particular, can
this also be understood as a coadjoint orbit of some (formal) group?

4.3. SUPERSYMMETRIC HIERARCHIES OF THE KP TYPE

We saw in Chapter Three that the Lax formalism provides an ideal framework
for studying integrable hierarchies of the KdV type, giving rise to a coherent
and robust edifice. Indeed we saw in Section 3.4 that any generalized n-KdV
hierarchy can be obtained as a reduction of the KP hierarchy by restricting to the
subspace of KP operators whose nth power is purely differential. The dynamics is
described by an infinite number of commuting flows. Each of these hierarchies is
formally integrable in the sense that it possesses an infinite number of conserved
charges in involution with respect to two coordinated Poisson brackets and a
bihamiltonian structure defined via the Adler map. Moreover one can identify
the second Gel'fand—Dickey brackets for every n-KdV hierarchy with the classical
version of the W,-algebra.
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It seems therefore natural to try follow the same path in our attempt to
define and study supersymmetric generalizations of KdV-type hierarchies. More
precisely, we should define our generic n-sKdV hierarchy starting from a Lax
operator of the form

n
L=D"+> UD"". (4.3.1)
i=1

In light of our previous discussion we would like to be able to characterize all
these n-sKdV hierarchies as particular reductions of a universal supersymmetric
KP hierarchy, whose Lax operator should be given by the n-th root of (4.3.1).
But, already at this point, we encounter a problem. As shown in [29] every
homogeneous S¥DO of the form L = D™ 4+ Uy D™~ ! + ... has a unique nth root
for odd n, whereas for even n the nth root need not exist or even if it does, it
need not be unique. Nevertheless for homogeneous SUYDQO’s of even order, say
L = D*"4+ Uy D?"~1+... it was proven in [32] that there exists a unique nth root
LY = D24 ... whose coefficients are differential polynomials in the coefficients
of L. This means that one is forced to treat separately the odd and even order
sKdV hierarchies and hence to consider two supersymmetric KP hierarchies. On
the one hand, we have the supersymmetric KP hierarchy (MRSKP) defined by
Manin and Radul in [29] which will reduce to the odd order sKdV hierarchies;
and on the other hand the even supersymmetric KP hierarchy (SKP2) defined
by Figueroa-O’Farrill, Mas, and Ramos [32], which will reduce to those of even
order. We should remark that the sKdV equation (1.3.3) is not obtained from
the SKPg hierarchy simply by demanding that some power of the Lax operator
be differential. In fact, the Lax operator corresponding to the sKdV hierarchy
is L = D* + UD which corresponds to the BSKPy hierarchy to be defined in
Section 6.3.

One could of course ask whether these are the only supersymmetric exten-
sions that the KP hierarchy admits. The answer to this question is clearly neg-
ative if we consider it in a slightly more general context. If we supersymmetrize
the KP hierarchy (c¢f. Section 3.4) by considering flows analogous to those in
Proposition 3.4.14 in the superVolterra group one can then construct a hierarchy
which does not possess a standard Lax formulation. This hierarchy is called the
Jacobian SKP hierarchy (JSKP) and it has been introduced by Mulase [33] and
Rabin [34].

THE MRSKP HIERARCHY

The MRSKP hierarchy has been introduced by Manin and Radul in [29] as a
supersymmetric extension of the KP hierarchy consisting in an infinite system of
flows for an infinite set of even and odd fields, depending on the space variables
(x, ) of the (1|1) superspace and on an infinite set of odd and even time variables
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(t1,t2,...) and having the KP hierarchy as a natural reduction. In this section
we shall consider some of the basic properties that will prove to be of interest
for us in the sequel.

The MRSKP hierarchy is defined as the universal family of isospectral flows
deforming a SWDO A = D + ..o, U;DI™% with U; € R. But in contrast to
the nonsupersymmetric case this infinite family of odd and even flows satisfy a
nonabelian Lie superalgebra whose commutation relations are

[Daj, Daj| =0, [Da;, Doj_1] =0, [Daj—1,Doj_1] = —2D9i12j—2 . (4.3.2)

(We have adopted here the same sign conventions for the time parameters ¢; as in
[53], [34].) A particular representation of (4.3.2) in terms of an infinite number
of odd and even times {¢1,t9,%3,...} is given by

0
D .
24 8t2i
0 0
Doy 1 =—— — toi 1 —mm , 4.3.3
' Otoi—1 ; 77 Otaiyaj—2 (4.3.3)
J>

where the odd times are odd variables satisfying to; 1f9j_1 = —to;_1t2;—1 and

hence t%i_l = 0. These flows are initially defined on R but one can extend them
on the whole R as evolutionary derivations, that is,

[Dai, D] = [Dgj—1,D] =0, (4.3.4)

and one can thus write the Lax flows of the MRSKP hierarchy in the following
manner:

Do A = —[A% A] = [A%, A] (4.3.5)
Doi_1 A = —[A271 Al = [AZ71 A] — 2A% . (4.3.6)

As a concrete example, let us write down the first flow Dy for a few fields:

DUy = —2Us
DUy = —Uj (4.3.7)
DUz = —U} — 2Uy — 2U3 — UsU] .

The fact that MRSKP admits a Lax formulation is doubtlessly a remarkable
feature that proves to be very important in applications. This seems to be
connected to what may be seen as a drawback, namely the fact that the algebra
of flows is no longer abelian. Indeed, one can redefine the odd flows in such a
way that they (anti)commute, but at the the price of the flows not being strictly
of Lax form, but explicitly dependent on the time parameters.
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The initial value problem associated to the MRSKP hierarchy has been
proven [53] to be uniquely solvable. Nevertheless, its complete integrability as a
dynamical system is far from being obvious. One can proceed by analogy with
the nonsupersymmetric case and write down an infinite number of conserved
charges

1
H, = —StrA™ foralln e N; (4.3.8)
n

but as one can easily see, for n = 2k, A%k = % [Ak , Ak] and Hyy, is trivial since
the supertrace annihilates (graded) commutators. Hence the first problem that
arises is to find out whether there exist even conserved charges. To the best of
my knowledge this is still an open problem, although as a systematic search at
low degree seems to indicate that there are no local even conserved charges [54].

This brings us to the major open problem concerning MRSKP, namely the
existence of a hamiltonian structure. Here too, since the original attempt of
Manin and Radul of writing the even flows of the hierarchy in a form reminis-
cent of the first Gel'fand—Dickey bracket (by using exactly the nontrivial odd
supercharges) not much progress has been made.

THE SKP9 HIERARCHY

The SKPg hierarchy was introduced in [32] as a supersymmetric general-
ization of the KP hierarchy, out of which all even order sKdV hierarchies could
be obtained by reduction. As shown in that paper, SKPs possesses an infinite
set of commuting even flows and all its sKdV-like reductions are integrable and
bihamiltonian. The bihamiltonian integrability of the unreduced hierarchy, al-
though implicit in [32], was proven by Yu in [55].

Given a generic even order sKdV hierarchy, the introduction of SKPs is
prompted by the following simple fact. Any even order supersymmetric Lax
operator L = Dk + Zfﬁl U; D%~ will satisfy a Lax-type evolution equation of
the form

“_p, I, (4.3.9)

if and only if

oL _ [P, Ll/k‘] . (4.3.10)

Therefore we are led—analogously to the nonsupersymmetric case—to the study
of the hierarchy based on the general supersymmetric Lax operator £ = D? +
S, UiD*7%. Then by imposing the constraint (£¥)_ = 0 we will obtain—
perhaps after imposing further constraints—all the even-order sKdV hierarchies.

The discussion of this even order SKP hierarchy can be made following closely
the nonsupersymmetric case of the KP hierarchy. Indeed the space €, of SDOP’s
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P for which the equation
oL

i [P, L] (4.3.11)
is a consistent (local) evolution equation can be related to the space Z, of SWDO’s
commuting with £, namely if M € Z, then M, € Q. Z, on the other hand, as
a vector space over the constants, is spanned by the powers L", for n € Z. From
this one can immediately characterize (), in the following fashion. The most
general element of {2, is given by a linear combination with constant coefficients
of L7, for n € N and by any superdifferential operator of the form f D%+ gD+h,
where h is an arbitrary differential polynomial of £ and f and ¢ are differential
polynomials of £ subject to the condition

"+ UL + 29U =0, (4.3.12)

where Uj is the coefficient of D in L.

Thus, we have an infinite number of even flows 0,L = [U}r , E} and one can
easily check that they commute with each other. We can therefore introduce an
infinite number of ‘time’ variables ¢,, for n € N and define the following flows
associated to them: or

o= len o (4.3.13)

The first few equations that one obtains by explicitly computing the first flow
on the first, say, four fields read:

ol
oty
OU;
oty
OUs

oty

% = !1/ + 205U — U!LUl — U3U{/ — UgUé .
1

=0

= 2U3U4
(4.3.14)
= ;Q' + UéUl - U3U{

The SKP5 hierarchy has an infinite number of nontrivial independent poly-
nomial conserved quantities. Indeed define

Hp=2StrL" forneN. (4.3.15)
They are obviously integrals of polynomial densities and moreover one can actu-
ally prove that they are nontrivial and independent. Thus they form an infinite
set of even (under the Zg-grading) conserved charges for SKPy. Hence SKPj is
formally completely integrable.
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THE JSKP HIERARCHY

Since there is no unique supersymmetric extension of the KP hierarchy one
could of course ask what distinguishes the different supersymmetric KP hierar-
chies or which one of them is a more natural generalization of the KP hierarchy.
We have previously argued that the MRSKP hierarchy has the advantage of
possessing a standard Lax formulation. Nevertheless, from a geometrical point
of view, it is not the MRSKP hierarchy the one that seems the most natural
supersymmetric generalization of the KP hierarchy. The flows of these KP-type
hierarchies have a fascinating geometric interpretation [34][33].

Morally speaking, one can understand this as follows. The spectrum of any
reasonable operator on a compact manifold is discrete. By duality, one expects
that if an operator is defined on a discrete set (say, a point) its spectrum would
be a compact manifold. Now, if L is a Lax operator for a KdV-type hierarchy, its
components are taken to be formal power series and hence will generically have
zero radius of convergence. In other words, we can think of it as being defined
on a point. It turns out that its spectrum can be thought of some Riemann
surface Y. The Lax flows, being isospectral, preserve this Riemann surface and
in fact can be understood as deformations of holomorphic line bundles over . By
continuity, the flows must preserve the topology of the bundle but not necessarily
the holomorphic structure. In other words, the KdV-type equations can be
understood as flows on the moduli space of (flat) holomorphic line bundles over
YJ; in other words, the Jacobian variety of 3. According to the geometric analysis
of Rabin [34], one cannot understand the MRSKP flows in exactly this fashion.
In other words, the MRSKP flows do not just deform line bundles over a fixed
superRiemann surface, but actually deform the superanalytic structure of the
superRiemman surface itself. The flows are not generic though: they are such
that the hierarchy remains integrable. If we insist in having strictly Jacobian
flows—that is, preserving the superRiemman surface—one is forced to introduce
a different hierarchy: the Jacobian SKP hierarchy (JSKP) of Mulase [33] and
Rabin [34]. This hierarchy seems to provide the the closest geometric analog of
the KP hierarchy in the supersymmetric case since its flows are defined on the
supersymmetric Jacobian variety of an algebraic supercurve.

To define the Jacobian SKP hierarchy it is necessary to abandon momentarily
the Lax form for the evolution equations. Instead, it is convenient to mimic the
treatment of the last subsection of Section 3.4 on dressing transformations and
try to write a natural set of flows in the superVolterra group.

Let us first consider the MRSKP hierarchy in this light. As shown in [29],
the necessary and sufficient condition for the existence of an even SUYDO, ¢ =
1+ 3,2, ViD™i, with V; € R, such that A = ¢D¢~ is U + 20, = 0. If
we restrict ourselves to such A’s then we can alternatively define the MRSKP
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hierarchy as the family of flows on the dressing operator ¢

Dip=—(¢D'¢7") ¢, (4.3.16)
or equivalently
06 _ _ 2 4 —1
By = (@D767) 9
o¢ - i+2j—2) -
Bty 1 (cb (D2 t+ Zm tyj1 D> 2) ¢ 1)_ ¢. (4.3.17)

One can prove that provided A is dressable, the two definitions of the MRSKP
hierarchy are indeed equivalent. First of all it is obvious that given the flows on
the dressing operator (4.3.16) one obtains the Lax flows on A:

DA = D; (D¢ 1)
=—(¢D'¢™")_¢D¢™" + (=)'pDo " (¢D'¢")
= —[A°A]. (4.3.18)

In order to prove the converse let us introduce the dressed version of A in the
Lax flows and rewrite them in the following form

(Dio+ (eD'67Y) ) Do~ = (=)ioDs™" (Diop+ (6D'67") _¢) 67" = 0.
(4.3.19)
Suppose now that D;p + (qﬁDigb—l)_ ¢ = AnNDN + Ay_1DN"1 4 .. for some
arbitrary N. Then one obtains the following conditions for the leading coeffi-
cients:

Ay =0 for N odd,

and
24N 1 — ()" Ay — (-)"2ViAy =0
A+ 2ViAN_1 — (=)"V]Ax =0 for N even. (4.3.20)

That is, in both cases we obtain that—provided we drop the constants—the
leading coefficient Ay must vanish and hence (4.3.16) is satisfied.
Notice that one can dress the following obvious commutation relations
[Doy; — D*, D] =0 (4.3.21)
[Dy;_1 — D*71 D] = —2D* (4.3.22)

and obtain the Lax flows (4.3.5) and (4.3.6).
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We can now define the JSKP hierarchy as the infinite family of odd and even
commuting flows on the superVolterra group given by

dp

i —1
Ot __(¢a¢ )_Qb
do B A
Otoit1 N (¢a 0o )— ¢, (4.3.23)

where ¢ =1+ 3+ V;D~% and {t1,t2,13,...} is the same infinite set of odd and
even times as in the case of the MRSKP hierarchy. One can easily work out the
first few equations, for the first few fields:

oy

LV

ot1 1.6

oVx

e 2 —Vao+ViVa— V3 (4.3.24)
(3}

Vs

"3 Ve + WV

ot 301+ ViVa,

where Viﬁ = (89‘/;)

Clearly, the even flows of JSKP coincide with the even flows of MRSKP
being actually nothing but the original KP system. On the other hand, since
@0y # Opo, it seems there is no simple way of writing the odd flows in terms of a
Lax operator L = ¢D¢~1; in other words, the JSKP hierarchy (or more precisely
its odd part) does not have a Lax representation in terms of fractional powers of
L. We can nevertheless write the JSKP flows in a Lax form (3.3.5) by defining
L = ¢0¢p~! and M = ¢dyo~ "', in terms of which the flows can be written as
follows:

oL
Ota;

oL
Ot2it+1

=—[L", L] and =—[(L'M)_, L] . (4.3.25)

Then the trivial commutation relations which give upon dressing the flows of the
hierarchy in the Lax form read

[Dai — 8',0] = 0
[Dait1 — 8i89, J]=0. (4.3.26)



Chapter Five

ADDITIONAL SYMMETRIES

The notion of integrability is intimately linked to the notion of symmetry.
The idea that a group of symmetries acting on phase space can be used to
solve a dynamical system goes back to Jacobi and Laplace and the method
of ‘elimination of nodes.” We are all familiar with the fact that the two-body
problem reduces down to a one-body problem relative to the center of mass.
In general, when a group of symmetries acts on a phase space in such a way
that the Poisson brackets are preserved, there is a well-defined procedure (called
hamiltonian reduction) by which to construct a lower-dimensional phase space.
If in addition the symmetries preserve the dynamics, then these can be effectively
described in the reduced phase space. It is not hard to show that a system is
completely integrable if and only if it can be reduced in this fashion down to a
trivial phase space consisting of isolated points. Liouville’s theorem on complete
integrability can be understood in precisely this fashion. Given a set of conserved
quantities in involution, their flows give rise to an action of (some quotient of)
the affine group. The resulting hamiltonian reduction yields a phase space that
in the best of cases consists of only one point. When the motion is quasi-periodic,
this is the essence of the Kolmogorov-Arnold-Moser theorem on invariant tori.
The coordinates on the tori are the angle variables and the action variables are
canonically conjugate ones which are functions of the conserved charges and the
hamiltonian.

Given an integrable evolution equation generated by some hamiltonian, the
flows generated by the conserved charges in involution are dynamical symme-
tries. Since these symmetries are sufficient to reduce the phase space down to
a discrete set of points, one may naively think that one cannot find other con-
tinuous symmetries. In particular, for the KdV-type hierarchies introduced in
Chapter Three, we classified all the possible Lax flows and they turned out to
generate the flows of the hierarchy. One would then not expect that there should
exist any ‘additional’ symmetries of Lax type. It thus came as some surprise
when Orlov and Schulman [56] in 1986 discovered an infinite set of additional
symmetries for the KP equation which can be written in Lax form. The catch
was that these symmetries are explicitly time-dependent.

In this chapter we review from a different perspective the additional sym-
metries of the KP hierarchy and then turn our attention to the determination
of the additional symmetries for the supersymmetric extensions discussed in the

66
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previous Chapter. For the KP case we will follow the treatment in [57] which
exploits a representation of the algebra of differential operators on the Volterra
group. This action is analogous to the map defined by Radul from the algebra
of differential operators on the space of Lax operators of the KdV-hierarchies,
hence we discuss this map briefly below. In Section 1, we also determine the
additional symmetries of the KP hierarchy and show that they are isomorphic
to W following [57]. In Section 2 we study the additional symmetries of three
supersymmetric extensions of the KP hierarchy: MRSKP, SKP5, and JSKP us-
ing a supersymmetric variant of the Radul map. The work in this second part is
contained in my paper [52].

5.1. ADDITIONAL SYMMETRIES OF THE KP HIERARCHY

THE RADUL MAP

The aim of this section is to introduce the Radul map. This will provide
us with an elegant framework in which to define the additional flows of KP and
make transparent W, as the algebra of additional symmetries of this hierarchy.

The context in which the Radul map appeared for the first time is neverthe-
less slightly different. Its original motivation lies in the general frame of attempts
to understand the W-symmetry, in particular by trying to relate W-algebras to
algebraic structures that are better understood. One method to investigate how
a class of algebras fits within other algebraic structures is to try and establish
maps (morphisms) between its objects and other well-known objects. In the
case of W-algebras, examples of such maps are the Miura transformation [15],
the (generalized) Drinfel’d-Sokolov reduction [17], and the Radul map [58].
This last one is a Lie algebra homomorphism from the differential operators on
the circle to the algebra of vector fields on the space of Lax operators, some of
which generate W-transformations.

Consider the subring R4 of differential operators on the circle and give it
a Lie algebra structure by the commutator. We call the resulting Lie algebra
DOP. We follow the notation in Chapter Three, and we let 9t denote the space
of WDO’s for the form 9+ 3,5, w;0' 7%, Taking n = 1 we are in the space of Lax
operators for the KP hierarchy, whereas taking wu;-, = 0 we are in the space of
Lax operators of the n-KdV hierarchy.

The Radul map W : DOP — T2 is defined by

W(E)=(LEL™Y_L=LE— (LEL™"), L. (5.1.1)

On TN we can define a Lie bracket as in (3.1.8). Let us recall this. Every
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A € TN of the above form defines a vector field 04 by

Oa = Zzagk) a(k) . (5.1.2)

In particular, 4L = A. We then define the Lie bracket [A, B] of two vectors
A, B € T by

Ia.B) = 04, O8] ; (5.1.3)
or equivalently
[A,B] = 0aB — 0gA . (5.1.4)
Notice that this is not the ordinary commutator in DOP.

THEOREM 5.1.5. The Radul map is a Lie algebra isomorphism

[W(E),W(F)] =W(E, Fl,) , (5.1.6)
where the modified bracket on DOP is defined by
(£, Fl, = 0w F — 0w E+[E, F] . (5.1.7)

(For a proof in the more general case of generalized pseudodifferential oper-
ators see [57].)

The image of the generalized Adler map is a subalgebra of T7 91, and this
allows us to pull back the bracket [—, —] on T 90 to a bracket [—, —]7 on T
defined by requiring that the Adler map be a homomorphism. FExplicitly, for
X, Y € TY9M, we have

[J7(X), JW)] = J(X, Y]}) , (5.1.8)
where
(X, Y]z = 8J(X)Y + X(LY)- = (XL);Y — (X < Y). (5.1.9)

Moreover there exists a Lie algebra homomorphism R : DOP — T79)t defined
by R(E) = —EL"! mod 9~"R_, which means that

[R(E), R(F)], = R([E, F],) , (5.1.10)
or, in other words, the following diagram is commutative
TP
R L]
popP % T

Let us now consider the immediate application of the homomorphism prop-
erty of the Radul map to the identification originally due to Aoyama and Kodama
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in [59] of W4, as the algebra of additional symmetries of the KP hierarchy.

ADDITIONAL SYMMETRIES

As we have seen in Section 3.4, the KP hierarchy is defined as the universal
family of isospectral deformations of a pseudodifferential operator A of the form
(3.4.1). The evolution of A is specified by the commuting family of flows 0; given
by (3.4.7). If one restricts oneself to operators satisfying a; = 0, then we saw
that one can lift the KP flows to the Volterra group GG. The Volterra group acts
naturally via dressing transformations L — ¢~ L, where ¢ = 1+ Y ois1 w0~ €
G is the dressing operator. In terms of the dressing operator, the flows of the
KP hierarchy are given by Proposition 3.4.14.

One can write these flows in a different way by using an analogue of the Radul
map [58]. The similarity between the expression for the Radul map (5.1.1) and
the one of the KP flows given by Proposition 3.4.14 suggests us to define a map

W'(E) = (¢E¢™ )¢, (5.1.11)

from DOP to the Lie algebra R_ of the Volterra group. The KP flows become
now dp¢ = —W'(9") = 0y (gn)¢, Where Oyy(gny is then a flow on the Volterra
group. The map (5.1.11) now translates the trivial fact [0",0™] = 0 into the
commutativity of the flows [0y, Op,] = 0. This allows us to represent the flows in
terms of an infinite set of times, 0; = 8%-’ with i = 1,2,.... One interpretation of
this feature is that every flow possesses an infinite number of symmetries given
by the other flows. This interpretation begs the question whether these are all
or, if on the contrary, there exist additional symmetries. Remarkably enough,
it turns out that one can construct a larger family of times-dependent flows
which contains as a subset the original KP flows and commute with them. This
new family of flows satisfies a nonabelian algebra with respect to which the KP
hierarchy forms its center. Thus we adopt here the following definition.

DEFINITION 5.1.12. By (additional) symmetries of an integrable hierarchy of
flows, we mean its centralizer in the algebra of times-dependent vector fields.

The fact that these symmetries contain the original hierarchy, although
largely taken for granted, is only true provided the flows of the hierarchy them-
selves satisfy an abelian algebra; and it is to these cases that the word ‘additional’
can be applied. We will see in fact that this is not generally the case for super-
symmetric hierarchies.

Along with Definition 5.1.12, it is in practice convenient to have a ‘work-
ing definition’ that is more suitable for computation. Our working definition
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is motivated by the following fact. The flows Oy () generated via (5.1.11) by
differential operators I' satisfying

[0; — 9", T] =0 (5.1.13)
commute with the KP flows. Indeed following [57] we have that

[Ow (1, 0i] = —[Ow (1), O (99))
— —aW/([F78i]¢) 5 (5114)

where [F,@i]¢ is a modified Lie bracket analogous to (5.1.7). This particular
bracket is given by

[, = O ()0 — Owri(on L + [T, 0]

= [0;,T] + [T, 0']
= [0; — 0%, T
=0. (5.1.15)

We therefore call ‘additional symmetries’ the flows generated by operators I’
subject to (5.1.13). It is conceivable that (5.1.13) is also a necessary condition—
that is, that all additional symmetries arise in this fashion; but we shall not
attempt to prove it here.

This means that looking for the additional symmetries comes down to trying
to find solutions for (5.1.13). An obvious solution to this equation is simply I' =
0, which, introduced in (5.1.13) and after applying a dressing transformation,
gives precisely the KP flows in Proposition 3.4.14. This agrees with the fact that
the KP flows commute with each other.

A more interesting solution can be obtained if we allow for an explicit depen-
dence on the time parameters of the hierarchy; that is, if we extend our ring of
functions by the infinite set of independent variables {t¢1,%2,...}, in which case
we have to extend the derivative operator 0 as a derivation in this new ring.

A priori, since z and all the ¢; are independent variables of our infinite set
of partial differential equations, we can automatically conclude that 0 has to be
extended trivially to the new ring. Nevertheless in the case KP, since the first
flow (for dressable L) reads 01L = [L4, L] = [0, L] and therefore gives 0 = 0y,
one can identify = with ¢;. One can then define (see, for instance, [40]) a formal
infinite-order differential operator

r=> jt;o" ", (5.1.16)

Jj=1



5.2 Additional Symmetries of SKP Hierarchies 71

which satisfies (5.1.13), and from it a two-parameter family of flows
Omt = (oTF0"671) 0, (5.1.17)

that satisfy [0k, On] = 0. Notice that for £ = 0 and m > 0 they agree with the
KP flows. Moreover since [0, '] = 1 it follows that the Lie algebra generated by
I%9™, k> 0 and m € Z is isomorphic (as a Lie algebra) to W1« and hence the
algebra of additional symmetries is nothing but W,. This was proven in [59] by
a direct computation in modes, but the proof using the Radul-like map is more
conceptual.

One can alternatively write the two-parameter family of flows in a Lax form

Ol = —[(MFL™_ 1],

where M = ¢I'¢p~! is the dressed version of I'.

Although realized here without it, W4, has a natural central extension given,
as a subalgebra of DOP, by the Khesin-Kravchenko [60] logarithmic cocycle. In
the KP context, the central extension appears when acting on the 7-functions—
equivalently, when we realize W, as free fermion bilinears in a two-dimensional
conformal field theory.

5.2. ADDITIONAL SYMMETRIES OF SKP HIERARCHIES

THE SUPERSYMMETRIC RADUL MAP

In this section we shall introduce a supersymmetric generalization of the
Radul map and we shall see that it defines a Lie algebra homomorphism between
the space of SDOP’s and T 99%. In order to do this we have first of all to define a
Lie (super)algebra structure on Tp9. Of course, since the elements of 779 are
in particular SWDO’s of order at most n — 1 one always has the obvious bracket
given by the graded commutator. Still this is not the one that will allow us to
exhibit the supersymmetric Radul map as a Lie algebra homomorphism. Instead
let us consider the natural Lie bracket on vector fields on 9, namely

[D4, Dg] = DaDp — (—)P4llPEIppD, (5.2.1)
This will induce in 790 a bracket [—, —] by
[Da, D]l = D py (5.2.2)

whose explicit form we shall obtain now.
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LEMMA 5.2.3. The Lie bracket [—,—] in Tp90 is given by

[4,B] = DsB — (—)!PallPslppa | (5.2.4)
for any two SWDO’s A and B in T .
PrOOF. Consider f an arbitrary function in S7. Then

(D, Dl f = (DaDp — (—)P1P21DpD4 ) f (5.2.5)

which using the fact that D4 f¥l = (<=)kPal (D, f )[k] (which follows by repeated
application of (4.1.20)) becomes

0B;
[Da, DBl f = Z Z DB +IIDAl 4] S

1,7=1k,1=0 8UH
(]
_(_)IDA||DB|+k|DA|+(l+k)|DB|B[l] 0A; of
Toull ) aul
= S (parpeba, g O (5.2.6)
1=1 k=0 8UZ
where
ii l|DA|A 85}[{:] ( )|DA||DB|+Z|DB|BH 814[” ’ (527>
1= T oU! ou;
j=11=0 J
and we get indeed (5.2.4). O

As we saw in Chapter Four one can pull the Lie bracket [—, —] on T 9% back
to Ty via the Adler map J(X) = (LX)4+L — L(XL)4. In other words one can
define a bracket [—, —]7 on T} such that

[J(X), J(Y)] = J(X,Y]7) - (5.2.8)
Computing [X, Y]} one finds [51]

(X, YT =(=)" DD Y + X (LY)-
— (XL)4Y)_ — (=) XD+ YD (x5 v (5.2.9)
This already tells us that the Adler map is a Lie (super)algebra homomorphism

mapping the cotangent space to the tangent space of 9 at L, each of them being
considered with the corresponding Lie algebra structure.
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Now we can finally define the supersymmetric analog of the Radul map
W : SDOP — T (5.2.10)
sending any F € SDOP to the tangent vector W (FE) defined by
W(E)=LE — (LEL ), L= (LEL™")_L. (5.2.11)

THEOREM 5.2.12. The supersymmetric Radul map is a Lie (super)algebra
homomorphism, i.e.,

[W(E), W(F)] =W(E,Flr) , (5.2.13)
where [E, F|r, is the modified Lie bracket on SDOP given by
(B, Flp, = [, F] + (=) Dyy ) F — (—)PIF0FI Dy B (5.2.14)

ProOF. By direct computation in the right hand side we have

[W(E), W(F)] = Dy W(F) — (=)PwelPwol Dy, o w(E)
:DW(E)(LFL_l)_L (— )IDW<E>|IDW(F>|(E<_>F)
= (W(B)FL™)_L+ (—)""Pwe LDy FL™Y) L
— (m)WFPwe (L= 'w(E) L™ _L
+ ()FIPwe (LFL= Y _W(E) — (=)PveliPvel(B + F)
= (LEL™Y_LFL™Y_L+ (=)FWl(LFLY_LEL™Y_L
— ()N LFELY) L+ (=) LDy (g FL™) - L
— ()IPweIPwe (B« F)
= (LIE,FIL™Y)_L + (=)"¥(LDy ) FL™)-L
_ (—)|F|(”+|E|)(LDW(F)EL_l)_L
—W([E,FL) . (5.2.15)

which proves the theorem. O
Notice that in the case where E and F' are independent of L we recover the
usual Lie bracket on SDOP.
We have in this moment the following diagram where both maps W and J
have been proven to be Lie algebra homomorphisms:

Tim
lJ
spop X 1oom

It would be thus interesting to see whether one can complete this diagram with
a homomorphism R such that Jo R =W.
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We consider therefore the map R : SDOP — T7901 defined by
R(E)=—(EL™")_ mod D™"S_, (5.2.16)
for any E in SDOP. Since D™"S_ C ker J we have that indeed
JoR(E)=W(E), (5.2.17)

for any E in SDOP and therefore Jo R = W.
THEOREM 5.2.18. R is a Lie algebra homomorphism, with

[R(E), R(F)]; = R(E, F1) (5.2.19)
PROOF. Using the fact that J o R =W and that |R(E)| = |E| 4+ n we have

[R(E), R(F)J;, = — (=) Dy (py(FL™) - + (EL™") (L(FL™)-)-
—(BLY-L)(FL™ ) = (0)FIFY(E & F)

— (=) Dy (g )FL N+ (HFIF(FPLW(E)LT) -
+(EL™Y)(LFL™Y) - — (B(FL™)-)-

+((BL )4 L(FL ™)) = (-)FIF(E & F)

— (B, FIL™ )~ — ()" Dy (s FL ™)~

T ()P IFHEIF Dy o B

= R([E, F]z) - (5.2.20)

O

COROLLARY 5.2.21. We have the following commutative diagram of Lie alge-
bras:
Ty

R Li !
spop Y Toom

THE MRSKP HIERARCHY

We shall start in this section the study of the additional symmetries of su-
persymmetric KP hierarchies by considering the supersymmetric extension of
KP defined by Manin and Radul in [29], the MRSKP hierarchy. The additional
symmetries of this particular hierarchy have been studied also in [61] and we
find agreement with their results.
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The flows (4.3.16) are reminiscent of the supersymmetric Radul map (where
in this case n = 1) and suggest us to define a map W’ : SDOP — S_ by

W'(E) = (¢E¢~")_¢, (5.2.22)

for any SDOP E such that D¢ = —W'(D") = —Dyy(pny¢, where Dypi(pny is
a flow on the superVolterra group. The algebra of flows of MRSKP becomes in
light of this definition a simple consequence of Theorem 5.2.12.

PROPOSITION 5.2.23. The MRSKP flows satisfy the Lie superalgebra given in
(4.3.2).

PRrooF. Following step by step the proof of Theorem 5.2.12 and replacing L
with ¢ we have that

Applying this to our MRSKP flows we get for instance

[D2i—1a D2j_1] = [DW/(D%fl), DW/(D2J'71):|
= DW/(2D2i+2jf2)
= —2D2i125-2 . (5.2.25)

One can in a similar way check that all the other commutators in (4.3.2) do
indeed vanish. O

After these general considerations concerning the MRSKP hierarchy we are
now prepared to tackle the problem of finding its (additional) symmetries. We
have seen that in the case of KP one defines a larger family of flows (i.e., contain-
ing the KP flows) which satisfy an algebra whose center is the KP hierarchy itself.
Here the situation will turn out to be slightly different since the MRSKP flows
themselves do not commute with each other but rather they obey the nonabelian
(super)algebra (4.3.2).

DEFINITION 5.2.26. We call (additional) symmetries of the MRSKP hierarchy
the centralizer of the algebra (4.3.2) of flows of MRSKP in the algebra of times-
dependent vector fields on 901.

Analogous to the nonsupersymmetric case, one way to look for additional
symmetries is to look for operators I' satisfying

[D; — D' T]=0. (5.2.27)

The additional flow associated to I' is then obtained via the supersymmetric
Radul map and is given by Dy ().
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One obvious solution is I' = 0, the even derivation on the ring S and the
generator (via the Radul map) of the even flows of the hierarchy. Notice nev-
ertheless that the odd derivation D—the generator of the odd flows—does not
obey (5.2.27) but for even i. One is therefore forced to conclude that only the
even flows are actually symmetries of the hierarchy, this being the most striking
distinction from the nonsupersymmetric case. Apart from this ‘trivial’ solution,
one can of course ask whether there also exist times-dependent symmetries of
the MRSKP hierarchy. The answer to this question is the object of the following
lemma.

LEMMA 5.2.28. Let S[t;] be the extension ring of S by the time variables {t;}
and let

To=z+3 th2ij_2 -3 Z toj 17 2Q + % Z (i — j)tai-1tej—10"7 72,
Jj=1 Jj=1 i,j=1
I'h=0+ thj_laj_l

j>1

where (Q = Oy — 00, be formal infinite order (super)differential operators in
S[ti][[D]] of Zy-degrees |I'y| =0, |I'1| = 1. These operators enjoy the following
properties:

a) [D; — D",Ty] =0, [D; — D",T1] =0, and [D; — D*,Q] = 0 for any i > 1;
b) [Q.I'1] =1, [Q,To] = —T1, [0,To] = 1;
C) [FO,Fl] = 0, [Fl,Fl] = 0, [FO,FO] =0. U

PrROOF. There is one point that ought to be mentioned here, concerning the
extension of the derivations 0 and D to the ring S[t;]. We recall that in the case
of the KP hierarchy the first even time could be identified with = because of the
first flow which read 01 = 0. Here, although the first even flow tells us again
that Do = 0, things turn out to be different. Indeed D cannot be (analogously
to 0) identified with D, as one can easily convince oneself by writing down the
first odd flow. We are therefore forced to proceed safely and do not identify x
with to, but rather keep them as independent variables and extend trivially the
action of 0 and D to the ring S[t;]. O

We can now define the ‘additional’ flows of the MRSKP hierarchy as the
following four-parameter family of odd and even flows

D jeip® = W/ (IELIQPO™) (5.2.29)

with £ > 0,1 =0,1, p= 0,1 and m € Z, where the even MRSKP flows can be
obtained as a particular case, namely Dy, 00,0 = —D2y, for m > 0.
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THEOREM 5.2.30. The additional flows are symmetries of the MRSKP hier-
archy, that is they commute with the MRSKP flows:

[Di, Dy gep] = 0 . (5.2.31)

PRrROOF. Using the expression of the flows in terms of the supersymmetric Radul
map and Theorem 5.2.12 we have that [D;, Dy, .1.,] = Dyy(_[pi rirt grom),)» With

(D', TET1 Q7™ = Dy (piy TETI Q7™ — (=)' ") Dy papt gogm) D'
+ [D, T QPo™]
— —[D; — D', TET QPO™] | (5.2.32)

which using Lemma 5.2.28 gives us the announced result. O

COROLLARY 5.2.33. The algebra of additional symmetries of the MRSKP hi-
erarchy given by (5.2.29) is isomorphic to the Lie algebra of SDOP, which is
isomorphic (as a Lie algebra) to SW1 .

PRrROOF. Indeed, the isomorphism is given by

2 =0, E= Q4110
0.—To, Ty, (5.2.34)

The isomorphism between SDOP and SWi4 is standard (see, e.g., [62]). O

The fact that we have introduced the generator () of supertranslations may
seem unsatisfactory to the purist, given that the MRSKP hierarchy is only de-
fined in terms of abstract derivations D; and D. One could therefore ask whether
it is really necessary to break manifest supersymmetric covariance in this fashion
instead of trying to construct another even generator I'y that would behave like
x and that would satisfy [D; — D?,Tg] = 0, [D,To] = I'y, and [3,To] = 1. This
turns out to be impossible, essentially because D itself is not a symmetry of the
hierarchy. Indeed, an explicit calculation shows that

[Dyi_1 — D¥71. 1] = [Dy;_1 — D¥71 (D, )]
= —2[0",T]
= 29" | (5.2.35)

which is different from zero and which thus contradicts the theorem. Hence
such an operator fo cannot exist. One could nevertheless insist that the very
definition of (additional) symmetry is not appropriate. Namely, one could argue
that by the very nature of an integrable hierarchy, every flow of MRSKP should
be thought of as a symmetry of all its other flows. In other words one should
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include D too as a generator of the additional symmetries. This would of course
require redefining the additional symmetries by adding to the previously found
flows (5.2.29) the actual flows of the hierarchy. One could even go further and
claim that once we allowed for the odd flows of the hierarchy to be part of
the additional symmetries, what we have done is really to relax the condition
(5.2.27) in order to include (4.3.22) as a particular case. But then consistency
would force us to also look for possible times-dependent solutions of (5.2.27)
where the right hand side would be proportional with an appropriate power of
0. If one carries on this computation one finds for instance a whole family of
odd operators I'y = 6 + 2321 ajtgj_lﬁj_l satisfying

[Dy; — D*.T1] =0, (5.2.36)
[Dgi_l - Dzi—l, Fl] = (ai - al)ﬁi_l . (5237)

This embarrassment of riches suggests that this more relaxed notion of additional
‘symmetry’ is of little interest.

A final remark on the additional symmetries on the MRSKP hierarchy is in
order. Consider the additional flows D, 00,1 generated by Q0™. These flows
obey an algebra isomorphic to the one obeyed by the odd MRSKP flows them-
selves. Therefore it seems that one could consider them as the odd flows of yet
another supersymmetric extension of the KP hierarchy, having the odd flows of
MRSKP as additional symmetries and in fact sharing the same additional sym-
metries as MRSKP. This hierarchy is in fact the object of a recent paper by
Ramos [63]. It would be interesting to understand how this hierarchy fits in the
geometric picture of Mulase and Rabin.

THE SKP9 HIERARCHY

We recall from Section 4.2 that the SKP9 hierarchy is defined as the universal
family of isospectral deformations of a SUDO of the form £ = D2+, U; D>,
with U; € S and its evolution is described by a commuting family of flows
oL = —[LL, L] = [L£%, L], where all the flows are even and therefore can be
represented in terms of an infinite set of even times {t1,to,...} by 0; = 8%—' In
the following we shall restrict ourselves to operators £ which are dressable; that
is, which satisfy the conditions U; = Uy = 0.

Notice that one can dress the following obvious commutation relations

[0 — 0™,0] = 0 (5.2.38)

with an arbitrary ¢ =1 + Zizl V;D™' V; € S, and obtain the SKPy flows.
Let us now consider the problem of finding the additional symmetries for this
hierarchy. Fortunately we can use our previous experience with KP and MRSKP



5.2 Additional Symmetries of SKP Hierarchies 79

to write down the generators of additional symmetries for SKP2. Indeed since
the hierarchy has only even flows, it follows that the x-like generator for the
additional flows of KP still commutes with the SKPy flows. Moreover, and
because of the same reason, both D and () can now be considered generators of
additional symmetries. In fact we have the following result:

LEMMA 5.2.39. Let S[t;] be the extension ring of S by the even time variables
{t;} and let

I'= :L’—I-thjaj_l

t>1

be a formal infinite order (super)differential operator in S|[t;][[0]]. This operator
enjoys the following properties: [0; — 0',T'] = 0 and [0,T] = 1. Moreover, the
operators D and Q obey: [0; — ', D] = [0; — 9',Q] = 0. O

We can now define the ‘additional’ flows of the SKP2 hierarchy as the fol-
lowing four-parameter family of odd and even flows

Dy ip¢ = W'(TED'QPO™) | (5.2.40)

withk > 0,1=0,1,p=0,1and m € Z. Again, the original flows of the hierarchy
can be obtained as a particular case, namely D, 000 = —0p, for m > 0.

THEOREM 5.2.41. The additional flows are symmetries of the SKP hierarchy,
that is they commute with the MRSKP flows:

[Di, Dygap] =0 . (5.2.42)

PRrROOF. Using the expression of the flows in terms of the supersymmetric Radul
map and Theorem 5.2.12 we have that

[8@ Dm7k7l7p] - .DWI(_[ai7FleQpam]¢) ; (5243)
with

[0, T*D'QPO™)y = Dyyrr(on ¥ D'QPO™ — Dyyrriri prggromy @' + [0, T* D' QPO™]
= —[0; — &, T*D'QPo™) | (5.2.44)

which using Lemma 5.2.39 gives us the announced result. 0

COROLLARY 5.2.45. The algebra of additional symmetries of the SKPo hier-
archy given by (5.2.40) is isomorphic to the Lie algebra of SDOP.
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PRrROOF. Indeed, the isomorphism is given by

Z2— =0, £ 5 (D Q)01
9, =T, 9 iD+Q). (5.2.46)

THE JSKP HIERARCHY

Following the same path as for MRSKP it is easily seen that the JSKP flows
can be written in terms of the W’ map, (5.2.22), by

D¢ = =W'(3") = —Dyyi(gny¢
Dopy16 = —W'(9"0) = —Dyyr(gn9,)9 - (5.2.47)

PROPOSITION 5.2.48. The JSKP flows satisfy a commutative Lie superalgebra.

PRroOOF. This is already clear since [0, 0™] = [0", 0™ 0y| = [0 0y, 0™ 0p) = 0. O
In this case we will look for additional symmetries generated by operators I'
satisfying
[Dy; — 0",T] =0
[Doir1 — 0'09,T] =0 . (5.2.49)

The two obvious solutions are, as expected, the even and odd derivations on the
ring S, 0 and 0yp. This means in particular that, unlike MRSKP, all the JSKP
flows are also symmetries of the hierarchy. One has nevertheless more.

LEMMA 5.2.50. Let S[t;| be the extension ring of S by the time variables {t;}
and let

To=x+ Y jtod '+ jtyj 107710 (5.2.51)
i>1 i>1
T1=0+) tg 10" (5.2.52)
Jj=1
Ty =20y + Y  jta;" 'y . (5.2.53)
i>1

be formal infinite order differential operators in S[t;][[0, Og]] of Za -degrees
ITo| = 0 and |T'1| = |I'e| = 1. These operators have the following proper-
ties:

a) [Do; — 0", T}] =0 and [Do;y1 — 009, T}] =0 for all k =0, 1,2;
b) [0,T1] =0, [0p,T1] =1, [['1,T1] = 0;

c) [0,T] = 0y, [09, 2] = 0, [T, 5] = 0;

d) [0,To] =1, [09,T0] =0, [I'1,T2] = T.
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ProoOF. It follows after a routine calculation. O
We can now define a three-parameter family of flows

Doy = W/(TET10™)
Domi1 k0 = W/ (TETL0™0y) (5.2.54)

where kK > 0, 1 = 0,1, and m € Z. Here the original JSKP flows are a special
case, Dp, 0,0 = —Dy, for m > 0, whereas the other ones represent the additional
symmetries of the JSKP hierarchy.

THEOREM 5.2.55. The additional flows are symmetries of the JSKP hierarchy,
in other words they commute with the flows on the Volterra group.

ProOF. We only have to use Theorem 5.2.12 and we obtain, for instance, for
the even flows

(D2, Do k1] = _DW/([aiyl“lgFllam]d)) ) (5.2.56)
where
[0, TETL 0™, = Dyyrion TEDLO™ + [0F, TET, 0™
Lol 10 Jg wr@@H)t ol sLoli
= —[Dy; — &', TETt 0™
=0. (5.2.57)

Analogous computations give us that

[D2i> D2m+17k7l] = _DW'([ai,FlgFllamag]¢) =0 5 (5258)

[D2it1, Dam. kgl = =Dy ((ai,,ririom),) =0 (5.2.59)

[D2it1, Domt1,k1] = =Dy (o, rirtomas),) = 05 (5.2.60)

which finally proves the above statement. 0

COROLLARY 5.2.61. The Lie superalgebra of symmetries of the Jacobian SKP

hierarchy is isomorphic to SDOP which is isomorphic (as a Lie algebra) to
SW1+oo-

PROOF. Let A be the Lie superalgebra of symmetries given by (5.2.54). It is
generated via the Radul map by r’grgam and r’grﬁamae for k> 0,1 =0,1 and
m € Z. The isomorphism SDOP — A is given explicitly by
zZ+ —0 s § — Oy
az — Fo , 85 — Fl . (5.2.62)

O
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Of the flows Dy, j; defined by (5.2.54), all but the Dy, 00 with m > 0 are
additional symmetries. These additional symmetries are isomorphic to the direct
sum of SW, with the abelian algebra generated by the flows D, 0o with m <
0. These flows are present only because the JSKP hierarchy is defined on the
superVolterra group. If, as in the KP hierarchy, JSKP were defined on the space
of Lax operators, these extra flows would not be present; for they act trivially
on L = ¢pd¢p~ L.

The isomorphism between the additional symmetries of all three SKP hier-
archies deserves a final comment. The picture that begins to emerge is that the
additional symmetries, although realized dynamically with explicit dependence
on the times, are actually a kinematical property of the dynamical systems; that
is, symmetries of the phase space in which the systems are defined.



Chapter Six

REDUCTIONS OF SKP HIERARCHIES

We have seen in Chapter Four how one can build up the Lax formalism for the
supersymmetric integrable hierarchies by analogy with the nonsupersymmetric
case. We concluded then that there is no unique supersymmetric KP hierarchy
which enjoys all the properties we would expect it to do (for example to yield
by reduction all the generalized sKdV hierarchies). Rather we were forced to
define several SKP hierarchies, all of which contain KP as a particular reduc-
tion. A closer analysis of MRSKP and SKP; revealed moreover that important
questions concerning these hierarchies still remain to be answered. We do not
understand yet the hamiltonian structure of the MRSKP hierarchy, although it
has been shown that the space of supersymmetric Lax operators admits a Poisson
structure analogous to the second Gel’fand-Dickey bracket of the n-KdV hierar-
chies. On the other hand the SKP9 hierarchy does not possess odd flows and its
bihamiltonian structure does not seem to display a superconformal structure.

There exists nevertheless a particular reduction of SKPs, the sKdV hierarchy,
which gives us a glimpse of hope since its natural Poisson structure—the superVi-
rasoro algebra—appeared via hamiltonian reduction from the Poisson structure
of the SKPy hierarchy. Also a first attempt of unraveling the odd part of SKP»
has been made in [64] where nonlocal conservation laws for the sKdV equation
have been constructed. This particular example begs the question whether there
exist more general reductions of the SKP hierarchies which possess the proper-
ties we would like them to have, such as locality, hamiltonian structure, explicit
superconformal structure, odd flows...

In this chapter we will attempt to give answers to some of these questions.
In particular we show that for the case of dressable Lax operators we can en-
dow the SKPg hierarchy with odd flows. Following [51] we study the symmetric
reduction of odd order sKdV hierarchies whose Poisson brackets define classical
W-superalgebras. Then we consider in detail the BSKP9 hierarchy which turns
out to be local, hamiltonian and whose Poisson brackets display a manifest su-
perconformal structure. The results in this chapter follow my paper [65] with
E. Ramos.

83
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6.1. DRESSABILITY AND ODD FLOWS FOR SKP»

Our main goal in this section is to define consistent odd flows for the SKP»
hierarchy. In order to do so we will consider particular SKPy Lax operators
that admit a square root, namely £ = A%, where A is the Lax operator of the
MRSKP hierarchy. We will be able to induce, via MRSKP, nonlocal odd flows
for dressable SKP9 Lax operators.

An SKPs Lax operator L is called dressable, if there exists an even SWYDO

=1+ AD, (6.1.1)
>1
such that
L=¢op . (6.1.2)

A simple computation reveals the following:

LEMMA 6.1.3. A necessary and sufficient condition for dressability is that U} =
Us = 0. O

In the introduction to Chapter Four, we motivated the SKP9 hierarchy by the
fact that £ does not admit in general a (unique) square root. Notice nevertheless
that if we restrict ourselves to dressable L£’s then there exists

L£Y? = gDy . (6.1.4)

In other words, the Lax operator of SKP9 admits a square root which is nothing
but the Lax operator of the MRSKP hierarchy. Clearly £1/2 will satisfy in this
case the dressability condition for MRSKP. As proven in [29] the square root,
if it exists, is not necessarily unique. Uniqueness can be achieved in our case if
we further impose manifest supersymmetry as well as homogeneity with respect
the natural grading. Moreover, if one works out explicitly the condition for the
square root of £ to exist, one obtains once more that U; and Us; must necessarily
vanish, and this is, as we have just shown, precisely the condition that £ be
dressable. One more remark is in order. One can easily convince oneself, by
working out explicitly the square root and dressability conditions for SKPs, that
both the coefficients of £1/2 and ¢ are nonlocal in the Uj’s.

We are now in a position to define odd flows for SKP».

PROPOSITION 6.1.5. Provided we restrict ourselves to dressable operators,
there is a one-to-one correspondence between flows in MRSKP and SKP».
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PrOOF. Consider a generic flow of MRSKP:
DA =[P, A], (6.1.6)

with P a certain SUDO. The flow on AZ is then

DA% = (DiAA + (—)PIA(DiA)
= [P, A7) (6.1.7)

in other words,
DL =[P L]. (6.1.8)

Conversely, consider a generic SKPo flow, of the form (6.1.8) and take into ac-
count the fact that £ = A%2. Then we get

(DA — [P, ADA + (=)PIA(DA — [P A]) =0 . (6.1.9)

Assume for a contradiction that the expression in the parenthesis does not vanish
but rather that DiA — [P,A] = ByDY + By_1DV~! + ... | for some N € Z.
The leading coefficients must satisfy the following conditions:

By =0 for N odd,
and
By_1=0
By + (=)IP12By_1 =0 } for N even. (6.1.10)
Then provided we drop the constants of integration, the leading coefficient By

must vanish; whence
DA =[P, A] . (6.1.11)

This proves the proposition. O]
It is convenient to change now our notation of the SKPy flows, namely we
will denote by D), the p-th flow of the hierarchy in such a way that Dg, = 0.

COROLLARY 6.1.12. The following are odd flows for the SKPy hierarchy:

1
Dy L=—[L"2.1). 0

It is important to remark that although the odd flows are explicitly local in
terms of the MRSKP variables, they are not local when written in terms of the
SKPg variables. This was already pointed out by Dargis and Mathieu in [64]
for the sKdV case. One could therefore ask whether there is no other way of
providing the SKPy hierarchy with local odd flows. An explicit computation for
the first few odd flows suggests that there is none.
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6.2. THE SYMMETRIC REDUCTION

In this section we investigate the reduction of the supersymmetric Gel’fand—
Dickey bracket induced by demanding that the Lax operator have a definite
adjointness property. We basically follow [51], the difference being that we
consider general pseudodifferential Lax operators. To motivate the definition of
the adjoint, let us think of differential operators as acting on superfields with
inner product

(U, V) = /B Uv . (6.2.1)

If L € §¢ is a homogeneous differential operator, we define its adjoint L* by
(LU, V) = (=)HIVI(U, L*V), for any homogeneous superfields U, V. The proof
of the following proposition is routine.

PROPOSITION 6.2.2. % extends to an involution in the space S of S¥DO’s
which obeys the following properties:

(1) For all P € S, (P*)*=P

(2) For all homogeneous P,Q € S, (PQ)* = (—)PIIQIQ* p*

(3) If P € S is homogeneous and invertible, (P~1)* = (=)IPl(P*)~1,

(4) For all p € Z, (DP)* = (—)@Dp.
(5) Forall P € S, (P+)* = (P*)+.
(6) For all P € S, sres P* = sres P (in particular, Str P* = Str P). -

If a Lax operator L = D™ + - - - has a definite adjointness property, it is dic-
tated by the first term. We shall say that L is symmetric if L* = (—)"("+1/2[,
We will show that the supersymmetric Gel’fand-Dickey bracket in the space
Mop41 of Laz;v operators of a given odd order induces a Poisson bracket in the
submanifold Mgy 1 of symmetric Lax operators and that the induced fundamen-
tal Poisson brackets define a W-superalgebra extending the N=1 superVirasoro
algebra.

In order to understand the constraints that the symmetry condition imposes
on the coefficients U; of L it is convenient to write L in a manifestly symmetric
way. In general, a symmetric Lax operator has the form

L=D"+3> {v;,D" 7}, (6.2.3)
jeln

where {V;, D"/} = V;D"7J + (—)/("=3) D"=3V; is the graded anticommutator
and the sum runs over the index set

Li={j =12 |[(-) DOm0/ _ (i) (6.2.4)

Equation (6.2.3) manifestly exhibits which of the fields V; are independent;
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namely, if n is even, we pick those V; with 7 = 0,1 mod 4; and if n is odd,
then we take those V; with j = 0,3 mod 4.

Some general facts readily emerge. If n is odd, there is always an independent
field of weight % and, moreover, this is the field of smallest weight. One can show
that its Poisson bracket is that of the classical N=1 superVirasoro algebra. For
even n the situation is radically different: there is never a field of weight % but
there is always a field of weight %

In order to describe the induced Poisson bracket we first need to identify
the vector fields and the one-forms on My 11 as subobjects of the corresponding
objects in My 1. The vector fields of My, 1 will be parametrized by the defor-
mations of L that remain in Moy, 1; that is, deformations of a symmetric Lax
operator L which keep it symmetric. These are clearly the differential operators
of order at most 2k obeying the same symmetry property as L. As explained
in Section 2.3, one-forms on My, must be chosen to be those one-forms on
IMap41 which are mapped (via the Adler map) to vector fields tangent to Moy 1.
In other words, one-forms on Mgy are SYDO’s X = ), D~=1X; satisfying
J(X)* = —(—=)*J(X). Computing this we find

J(X) =[(LX)+ L= L(X L))"
—(—)XFL[LH(LX): — (X L) LY]
= [L(X°L); — (LX) 1)
=(LX"),L — L(X*L),
. (6.2.5)

whence X must have the same symmetry properties of L, namely X* = —(—)*X,
for it to be a one-form on My 1. It is easy to verify that these one-forms are
non-degenerately paired with the vector fields tangent to 9ox41. In fact, since
Str AX = Str A*X™* we see that the supertrace pairs up one-forms and vector
fields of the same symmetry properties. Therefore the Poisson bracket of two
functions F' = [ f and G = [5 g on My is obtained from (4.1.28) (with J
given by (4.1.29)) by simply requiring that dF and dG have the correct symmetry
properties: (dF)* = —(—)*dF and the same for dG.

One can now explicitly compute the induced fundamental Poisson brackets
on Myr1. We have seen that the field of smallest weight is V3, which has
weight % One can actually show that the induced fundamental Poisson bracket

{V3(X), V3(Y)} defines a N=1 superVirasoro algebra. Indeed if we define the
differential operators €2;; by

{Vi(X), V;(Y)} = Qi0(X = Y) , (6.2.6)
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where the ();; are taken at the point X, we find

k(k+1 3 1
Q33 = kk+1) I ) ps - §V3D2 + 5V3’D + V3, (6.2.7)
whence, if we let G = V3 this will give rise to a classical version of the N =1

superVirasoro algebra

MELD po 4 Se(0 02 4 60D + 6" ()] 6(X — 1)

{G(X), M)} = |7 S
(6.2.8)

6.3. THE BSKP; HIERARCHY

One of the remarkable features of the bihamiltonian structure for the KdV-
type hierarchies is the fact that the second Gel’fand—Dickey bracket exhibits
(after a standard reduction) a conformal structure. In the supersymmetric case
however, and in spite of the fact that the SKPo hierarchy is bihamiltonian,
its second Gel’fand-Dickey bracket does not explicitly exhibit a superconformal
structure. On the other hand, its natural reduction to dressable Lax operators
gives rise to a nonlocal induced hamiltonian structure [66], whose first reduced
Poisson bracket is indeed the superVirasoro algebra. This encourages us to search
for a local reduction of the SKPy hierarchy whose hamiltonian structure yields
an nonlinear extension of the superVirasoro algebra.

In the introduction to this chapter we remarked the existence of a partic-
ular reduction of SKPo which displays these properties: the sKdV hierarchy is
the unique reduction (of a fourth order Lax operator) of the SKPo hierarchy
satisfying the constraint

L*=DLD™ !, (6.3.1)

where * is the involution in Proposition 6.2.2. On the other hand, this condition
is nothing but the supersymmetric analogue of the constraint used in [25] to
define the BKP hierarchy. This prompts us to consider the general reduction of
SKPy defined by

L*=-DLD™L. (6.3.2)

We call it the BSKPs hierarchy and we denote by {)JVTQ the subspace of SKP9 Lax
operators satisfying this symmetry condition. This hierarchy is to be compared
with the orthosymplectic SKP hierarchy studied by Ueno, Yamada, and Ikeda in
[67]. The reduction (6.3.2) was shown in [55] to be consistent, as long as only
half of the flows are considered. Let us for the sake of completeness recall this
result.
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PROPOSITION 6.3.3. The condition (6.3.2) is equivalent to the conditions

sres(£*" 1D =0,
2sres L2 — sres(L D7) =0 . O

Let us now see what is the concrete form that the Lax operator must have
for it to satisfy the constraint condition; in other words, which are the fields
that survive the reduction. Since we have an infinite number of fields it is not
practicable to try to explicitly work out the constraint at the level of the Uj’s.
Instead, it is more convenient to write the Lax operator £ in a more symmetrical
form, by using a different basis.

In order to do this, as well as for later purposes, we define now a map ¢
going from the space 91 of MRSKP Lax operators to the space 99 of SKP»
Lax operators, given by

L=g(A)=AD . (6.3.4)

It is not difficult to see that ¢ maps symmetric operators A into BSKP9 Lax op-
erators £ obeying (6.3.2). From Section 2, we know that the symmetric operator
A can be written as

A=D+3 > {v;,D"7} . (6.3.5)
7=0,3mod4
3>0
It follows then that the BSKPs Lax operator can be written without loss of
generality as
L=D*+% > {v;,D"}D. (6.3.6)

7=0,3mod4
>0

It is sufficient to write down the first few terms of £ to realize that this reduction
sets the first two fields of £ equal to zero. Hence L is dressable and we can apply
the machinery developed in the previous section in order to define the odd flows
associated to the half-integer powers of the Lax operator.

Let us now investigate which of the SKP9 flows survive the reduction. From
Section 1 we know that SKPs has both odd and even flows.

PROPOSITION 6.3.7. Only those flows D, with p = 2,3 mod 4 are consistent
with the reduction (6.3.2).

PROOF. Let us first consider the even flows Dy,. Take the adjoint of the even
SKP3 flow given by (4.3.13) and use the condition (6.3.2). If follows already from
the leading term that n has to be an odd integer. In addition one gets that the



90 Chapter Six: Reductions of SKP Hierarchies

following condition has to be satisfied:
(DLPD™Y_ =DLP DL (6.3.8)

It is a simple computational matter to check that for A an arbitrary S¥DO,
(DAD™Y_ = DA_D7! if and only if sres AD™! = 0, which is precisely the
case for p odd by Proposition 6.3.3. In order to see which of the odd flows will
survive one has to first analyze the MRSKP hierarchy under the reduction A* =
—DAD™!. In this case one sees that condition (6.3.2) implies sres A*~1 D=1 =0,
which is equivalent to

(DA*=1D=1_ = pA*=ip-L (6.3.9)

From this it follows that only the MRSKP flows Dy_1 preserve the constraint.
Therefore only the SKP9 flows Dy;_1 preserve the constraint. In summary, we
find that precisely the SKPo

2%~
Dy L =—[L_ * L] and (6.3.10)

Dyj—oL = —[L**71 L]

N[

will survive. U
One can trivially write down the first flow Dy on any of our fields, V}, j =
0,3mod 4, j > 0, since DoL = [L4, L] = (OL).
Finally, let us remark that these flows span the following subalgebra of the
algebra of flows:

[Dyi—2, Daj_2] = [Dai—2, D4j—1] =0 and [Dgi—1, Daj_1] = 2Dsit45-2 .
(6.3.11)

HAMILTONIAN STRUCTURE

One would naively expect that the hamiltonian structure for BSKPy can be
simply obtained by a suitable reduction of the hamiltonian structure of the SKP»
hierarchy. Unfortunately this is not the case, since the constraints seem to be
formally first-class. Although in the finite-dimensional case there exists a well-
developed machinery to treat such constraints, here their infinite number forbids
a similar analysis. Nevertheless, the solution to the problem is suggested by the
connection (6.3.4) between the MRSKP and SKPy Lax operators. In a nutshell,
we will pull back the Adler map from MRSKP to SKPy and we will check that
the even flows are hamiltonian relative to the induced hamiltonian structure.



6.3 The BSKPy Hierarchy 91

Let us consider again the map ¢ from the space 91, of MRSKP operators to
the space My of SKPy operators given by equation (6.3.4). The image under ¢
of the subspace 9 defined by the condition A* = —A is precisely the space 91,
of BSKP5 Lax operators.

From the geometric formalism developed in Chapters Three and Four, we
know that the Adler map can be understood as tensorial map from one-forms to
vector fields. Therefore, we can use the map ¢ to pull back the Adler map on
My to My. This is done by completing the following commutative square:

p— J pocs
TAml — TASﬁl
& =
* Y)Y JB an
TLWQ -——> Tﬁm2
In other words, Jg = ¢s« o J o ¢*. Let us compute this. If X is any 1-form in

%2, it obeys
x* = (—)¥Ipxp-!. (6.3.12)

Its pull-back via ¢ to a one-form on 5)71 is given by
Y =¢"(X)=DX. (6.3.13)

Notice that Y* = —Y and therefore it is indeed a one-form on {)Dv?l. Similarly, if
A is a vector field on 9, its pushforward via ¢ to a vector field on My is given
by @«(A) = AD. Therefore, the induced hamiltonian map in 9% is given by

Jp(X) = (LX), L— LD Y(DXLD 1), D. (6.3.14)

In order to show that Jp provides a hamiltonian structure for the BSKPo
flows, let us first consider the following set of hamiltonian functions

1
2k -1

Hy,_o = Str L2+ (6.3.15)

Their gradients are given by
dHyp_o = L2F72 (6.3.16)

and they obey (dHu,_2)* = DdHy,_sD~!, so they define one-forms on Ms.
From (6.3.14) and Proposition 6.3.3 it follows that

Dyp—oL = Jp(dHyp—2) (6.3.17)

as required. To prove that the odd flows are hamiltonian with respect to Jpg
is a much more delicate matter. Notice that the natural odd hamiltonians are
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provided by
Str£2F2 (6.3.18)

1

Hiyg 1 =
4k—1 2% — %
and their integrands are nonlocal in the U;. Therefore the formalism developed
for differential polynomials of the U; should be extended to integrodifferential

polynomials. Nevertheless, if one proceeds formally, one obtains
dHy,_y = L2*73/2 (6.3.19)
which defines an odd one-form in SSJVTQ; whence
Dy 1L =Jp(dHy_1) . (6.3.20)

that is, the odd flows are also hamiltonian.

In order to compute the Poisson bracket between two functions F' = [ Iy
and G = | pg on ﬁg, we simply require that their differential have the correct
symmetry properties; that is, (dF)* = (=)%FIDdFD~' and the same for dG,
and use (4.1.28) with Jp. Notice that despite its appearance the fundamental
Poisson brackets induced by (6.3.14) in 9%y are local. This can be seen most
easily by realizing that at the component level the map ¢ is simply an identity,
therefore the locality of the fundamental Poisson bracket on 20; ensures the
locality of the fundamental Poisson bracket among the U;. Moreover this induced
Poisson bracket defines a nonlinear extension of the N = 1 superVirasoro algebra
(Wpskp) by fields of spin k£ > 0, where 2k = 0,3 mod 4.
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SUPERSYMMETRIC HIERARCHIES IN STRING THEORY

One of the most pleasant surprises that noncritical string theory has had
in store for us is its relation with classical integrable hierarchies of the KP-
type. The KdV hierarchy appeared unsuspectedly in the double scaling limit
of the one-matrix model—a fact which recurs in the multimatrix models for the
generalized KdV hierarchies, and which allows one to exactly compute correlation
functions on arbitrary topology. Indeed, the partition function of the (p — 1)-
matrix model, which in its gth critical point describes (p,q) conformal matter
coupled with two-dimensional gravity, coincides with the 7-function of the p-KdV
hierarchy. This 7 function has to be special in the sense that it has to fulfill an
infinite set of W-constraints which excludes, for example, the polynomial soliton
solutions. This success notwithstanding, the generalization of these techniques
to the supersymmetric case is still an open problem and the precise relation, if
any, with supersymmetric integrable hierarchies remains elusive.

In this chapter we discuss new supersymmetrizations of the generalized KdV
hierarchies suggested by a new supersymmetric extension of the KdV hierar-
chy that has appeared in a matrix-model inspired approach to two-dimensional
quantum supergravity. The resulting supersymmetric hierarchies are generically
nonlocal, with the exception of the KdV and Boussinesq which turn out to be in-
tegrable and bihamiltonian. The first section is expository in nature, describing
briefly the appearance of the KdV hierarchy in the hermitean one-matrix model.
We follow the treatment in [68]. The next two sections describe the contents of
my papers [69] and [70] with J.M. Figueroa-O’Farrill.

7.1. THE KDV HIERARCHY AND THE ONE-MATRIX MODEL

Let us start by defining the Hermitean one-matrix model. Consider there-
fore the zero-dimensional quantum field theory having as generator of Feynman
diagrams the following partition function

Z(N,t) = /dMeXp ~N(3Tr M* +tTr MY) (7.1.1)

where M is a Hermite.an N x N “matrix and we have the standard measure dM =
[T; dM;] T1;; d(ReM])d(ImM}). Starting from this field-theoretical model one
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can immediately deduce the Feynman rules and and draw the corresponding
Feynman diagrams. These will turn out to have a double-line structure due
to the matrix-valued fields (see Fig. 1.3). By joining together the edges of the
double lines in such a way that they form closed curves and by filling these circles
with oriented discs, we can associate to any of these diagrams a Riemann surface
Y together with a simplicial decomposition.

We are clearly interested in the continuum limit of this model. Therefore, in
order to obtain the large N behavior of the model, we need the power counting
of N for a given connected diagram. (Notice that W(N,t) = log Z(N,t) will
generate all the connected diagrams.) Each vertex contributes a factor of N,
each edge (propagator) a factor of N~! since the propagator is the inverse of
the quadratic term, and each face a factor of N due to the trace. Thus each
connected diagram has an overall factor NV—F+HF = N2720 — NX (where y is
the Euler characteristic of the Riemann surface) and as a result W (N, t) may be
expanded as

W(N,t) = i N2=2hw (t) | (7.1.2)

h=0

with .
Wa(t) =Y t"S(h,n) (7.1.3)

n=0

where S(h,n) is the number of all possible quadrangulations of a surface of genus
h with n squares.

Suppose we consider now, independently, a D = 0-dimensional string theory,
that means a pure theory of surfaces with no coupling to additional “matter”
degrees of freedom on the string worldsheet. The remarkable result is that if
one computes the corresponding regularized partition function obtained by dis-
cretizing the Riemann surfaces it turns out that this can be identified with the
free energy of the matrix model. Moreover one can recover the string theory in
a suitably defined continuum limit, known as the double scaling limit.

In the continuum limit we are clearly interested in the case of an infinite
number of squares, that is the limit in which the infinite tessellations dominate
the sum (7.1.3). This occurs when ¢ — t. for which (7.1.3) ceases to converge.
Given the large n behaviour of S(h,n) ~ e (7=2X/2-1p,  where c, v, by are
constants, the genus A contribution starts to diverge when ¢t — t. = e=¢. The
double scaling limit is defined then by N — oo, t — t., keeping fixed the
“renormalized” string coupling constant g, where

2

Al=N (t —_ tc)% : (7.1.4)

te
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Then the continuum limit of W (N, t) will be given by

— —2
Weont = 3_ A2 thhr(%) . (7.1.5)
h=0

ORTHOGONAL POLYNOMIALS AND THE KDV HIERARCHY

Our aim in this section is to see how in the process of computing the partition
function of the one-matrix model the KdV hierarchy and the string equation
appear. For this it will be useful to consider a slight generalization of (7.1.1),
namely

Z(N,t) = /dM e NTVOLY (7.1.6)
where the general potential V (M, t) is given by
] 00
V(M) =5 Tr M? +;)tk Tr M2 (7.1.7)

In other words we consider tessellations of genus h Riemann surfaces by 2k-gons
of arbitrary k. This model is invariant under the unitary group U(N) which
acts like M +— UMUT, leaving dM and V' (M, t) unchanged. This allows one to
bring any matrix M to a diagonal form A = diag(A1, A, ..., Ayx), such that the
partition function becomes

O [ 1 )
2=y | T TTw =2 (118)
) =1

i<j

where the new measure is given by du();) = dhe” NVl with V(A t) =
N4 A2 and Qn = VolU(N). This integral can be nicely factorized by
introducing the orthogonal polynomials ¢, (\), n = 0,1,2,... corresponding
to this measure 1, (A) = A+ ... such that

/dﬂ wn()‘)qﬁm()‘) = hpdnm (7-1-9)
obtaining in this fashion
N-1
Z(N,t)=Qy [] ha(t) - (7.1.10)
n=0

The way to compute the h;’s is by introducing the infinite-dimensional ma-
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trices P and () defined by

Qnmhm = /dlu ¢n(>\))\¢m(>\)

Prmhim = /du zpn(x)%zpmu) , (7.1.11)

that obviously obey [P,@Q] = 1, which is the discrete analogue of the string
equation.

The remarkable fact is that in the double scaling limit the matrix () becomes
a second-order differential operator of the form

Q=02*+u(x,t), (7.1.12)
where the field u(x,t) = 20, W (t). This differential operator not only looks very

much like the Lax operator of the KdV hierarchy, but indeed satisfies the KdV
flows

Q) k/2
i 7.1.13
o = l@al, (71.13)
whereas the string equation reads
o0
1= k@, QY77 (7.1.14)
k=1

What about the continuum limit of the matrix P? After much toil it follows
that P turns into the differential operator

P= —%(MQ_%)+ : (7.1.15)

where M is the dressed version M = ¢I'¢~! of the operator in (5.1.16).
m .
L=> jt;o . (7.1.16)
j=1

This is equivalent to saying that the partition function of the one-matrix
model Z(z,t) = exp(W(z,t)) is a 7-function for the KdV hierarchy obeying—as
a consequence of the string equation—an infinite set of constraints

LnZ(x,t) =0, (7.1.17)

for m > —1, where the operators L,, are differential polynomials in the t;’s
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satisfying the Virasoro algebra
(L, L] = (n —m) Lyt (7.1.18)

for any n, m > —1 or, more precisely, forming a maximal anomaly-free subalgebra
of the Virasoro algebra.

7.2. INTEGRABLE HIERARCHIES IN SUPERMATRIX MODELS

SUPERSYMMETRIC ‘MATRIX’ MODELS

Given the success of the matrix model approach to noncritical string theory
and the most pleasant surprise of its relation with classical integrable hierarchies
of the KdV type, it seems natural to try to construct a similar approach to
noncritical superstrings. This nevertheless turns out to be a fairly difficult task.
The generalization of these techniques to the supersymmetric case is still an
open problem and the precise relation, if any, with supersymmetric integrable
hierarchies remains elusive.

In order to circumvent the problems encountered in an earlier unsuccessful
attempt ([71]) to define a theory of noncritical superstrings using supermatrices,
a model was proposed in [72] in which one does away with the matrices all
together, and takes as a starting point the integral over the would-be eigenvalues,
which is the supersymmetric analogue of (7.1.8)

N
Z4(N,t,7) o /Hd,u(Ai,Hi) [T = A —0:05)* (7.2.1)
=1

1<J

where 6; are odd variables and the measure is given by du()\, ) = dX\ df e~V 0
with the ‘potential’ V/(X,0) = 3", <o (tr + 0)AF.

By imposing superVirasoro constraints—in analogy with the Virasoro con-
straints in the one-matrix model—correlation functions and critical exponents
were calculated to first order in the topological expansion. Remarkably, they
were found to coincide with those of certain superconformal matter coupled to
2—d supergravity. Recently, in [73], the model was solved for arbitrary genus.
In the double scaling limit the analogue of the field u = 20?log Z is now a pair
(u, &) with u the ‘body’ of the two-point function of the puncture operator and
¢ the first fermionic scaling variable, satisfying

0% log Zy = u+ £0%¢ . (7.2.2)

Moreover the fields u and £ were found to satisfy a whole hierarchy of flows which
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looked very much like a supersymmetric extension of the KdV hierarchy. Indeed
the odd flows on u are trivial

ou
e =0 Yk (7.2.3)

whereas the even flows are those of the KdV hierarchy:

ou
Bt k1 (7.2.4)
= [K*0° + 2u0 + 20u] - Ry, , (7.2.5)

where the Gel'fand-Dickey polynomials R = Ry(u) are the gradients of the
conserved charges of the KdV hierarchy and x is the renormalized string cou-
pling constant. The equality of (7.2.4) and (7.2.5) imply the celebrated Lenard
relations between the Ry, which can be translated into a recursion relation for
the flows:

0 0
=~ “H = [0 + 20+ 20u07] - == (7.2.6)
n n
Normalizing Ry = %, we can compute all the other Ry recursively: Ry = u,

Ry = k?u” + 3u?, and so on. In terms of the Ry, the commutativity of the KdV

flows translates mto
8R’ 0Rn 41

an identity that, as we will see shortly, implies the invariance of the even flows
under supersymmetry. From the analysis in [73], £ is given by

== Tl (7.2.8)

k>0

(7.2.7)

wherefrom we can read how it evolves along the flows

o ORy,
I = R, and 8tn ;) T (7.2.9)

The first nontrivial even flows were found in [73] to be

0 0
0;1 w20 4+ 6uu’  and 0—1551 = k2" + 6ue’ (7.2.10)
whereas the odd flows were found to be
ou o€
— = d =—==—-u. 2.11
P 0 an p u (7 )

Notice that the the first equation in (7.2.10) is nothing but the KdV equation
for w.
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THE SKDV-B HIERARCHY

The purpose of this section is to identify, along the lines in [69], the hierarchy
found in [73] and mention some of its immediate properties: conserved charges,
bihamiltonian structure, and integrability. We will conclude that this hierarchy
is simply a supersymmetric covariantization of the KdV hierarchy, and as such
not very different from it.

It was observed already in [73] that the first even flow on w and ¢ is invariant
under the (global) supersymmetric transformations

bu=¢ and =wu. (7.2.12)

In fact, as we will show in a moment, this continues to be the case for all the even
flows. On the other hand, the odd flows are not supersymmetric, for whereas &
evolves, its supersymmetric partner u does not. Nevertheless, one can modify
the odd flows to make them supersymmetric. We will comment on this further
on.

PROPOSITION 7.2.13. The even flows are invariant under (7.2.12), while the

odd flows satisfy
0 0
) =— . 2.14

PRrooOF. We first consider the even flows:
) 6Rur1 .\ o¢
0. — — .
{ ’(‘%n]u ( Su 5) (‘%n

OR
Z Tk nH + Z =" =0.
k>0 8tk 1 k>0 Otn

Notice that we can rewrite the flows on £ in a simpler way:

3

=0R,1 . 2.1
ot Rnp1 (7.2.15)

From this, the analog result for ¢ follows trivially, because

o€ ou

5atn_R”+1 o atnég (7.2.16)

On the other hand, for the odd flows we obtain for u

91 o ou
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whereas for £ one has

0 ¢
5, | &= —6R, = — , 7.2.18
where we have once again used (7.2.15). O

Since the sKdV-B hierarchy is supersymmetric, one can express its flows in
a way that makes this manifest, whereto we introduce the superfield T' = & 4 Ou,
a function in a (1|1) superspace. In superspace, the supersymmetry algebra is
realized as supertranslations, which on superfields look like 6T = QT', where
Q= % — #0. We will denote by D the supercovariant derivative D = % + 60 ,
which anticommutes with (). One can recover the fields v and £ by taking the
appropriate projections: u = DT |g—q , & = T|g—o.

Rewriting both equations in (7.2.10) as a single equation on the superfield

T, we find 5
I _ 2l 6777 | (7.2.19)
ot1

where [ denotes differentiation with respect to D. Note that we are using the
convention that on a superfield / denotes derivative with respect to D, whereas
on components it denotes derivative with respect to 0. This should cause no
confusion. Now notice that if we differentiate both sides of the equation once
more with respect to D, we get

T/
27 = 271 61T (7.2.20)
1

which is nothing but the KdV equation (cf. the first equation in (7.2.10)) for the
superfield 7" = u + 0. In fact, as we now show, this continues to be the case
for all the other equations of the hierarchy; whence we will be able to conclude
that the sKdV-B hierarchy is essentially equivalent to the KdV hierarchy.

This may require some explanation. The abstract KdV hierarchy is defined
as the hierarchy of isospectral deformations of the Lax operator L = x20? + u,
where w is simply a commuting variable generating a differential ring. Particular
representations of this abstract KdV hierarchy are obtained by letting u be, for
instance, a smooth function on the circle or a rapidly decaying smooth function
on the real line. A more exotic representation can be defined by taking u to be
an even superfield, say, 7/. We claim that the hierarchy so obtained is precisely
sKdV-B. For notational convenience we will denote by KdV(T") the KdV hier-
archy with 7" as the basic variable, and reserve KdV for when the basic variable
is w.

Consecutive flows in both the KdV(7”) and sKdV-B hierarchies are related
by a recursion relation. This means that knowing the first flow one can obtain
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all the others by repeated application of a recursion operator. We have seen that
the first flows of both hierarchies agree, thus all we need to show in order to
prove the equivalence is that the recursion operators are the same.

The recursion relation for the flows of the KdV(T”) hierarchy can be read off
from (7.2.6) and is given by

/
= [k20% + 2070 +2T"] - gTT : (7.2.21)

or’
atn—i—l

Stripping off a D from both sides, we can rewrite this as

or
Otp

aT
atn—i—l

= [*0* +2DT'D' +2D7'T'D] - (7.2.22)

which in components reads

a
s _ (KPP +2u+207w0 206071 —2071¢0 . e (7.2.23)
Bu 0 K20% 4 2u + 20ud™! )

Ottt Otn

and this, in turn, agrees with the recursion relation (40) in [73]. Thus, we
conclude that the flows of the two hierarchies agree.

BIHAMILTONIAN STRUCTURE AND INTEGRABILITY

It was shown in [32] that sKdV-type reductions of the SKP9 hierarchy are
bihamiltonian: the two structures being given by the supersymmetric analogs of
the Gel'fand-Dickey brackets constructed in [18]. In particular, the hierarchy
associated to the operator D* + Uy D3 + Uy D? + UsD + Uy is bihamiltonian, and
so is its reduction U3 = Uy = Uy = 0 to sKdV. It would thus seem reasonable
to expect that the sKdV-B hierarchy, which is obtained as the reduction U; =
Uy = U3 = 0 and Uy = T, would inherit a bihamiltonian structure in this
fashion. However, this turns out not to be the case: it is easy to show that
setting U; = Uy = U3 = 0 collapses the rest of the phase space.

We can nevertheless exhibit a bihamiltonian structure for sKdV-B exploiting
its equivalence with KdV(7”). We first rewrite the analogs of (7.2.4) and (7.2.5)
for KAV(T"):

/ 5HKdV
I _ 5. 2k (7.2.24)
8tk ou
u=T"
5HKdV
= [#%0° +2T"0 +20T"] - —F— (7.2.25)
u=T"
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For HEWY = [ hy(u), we have that

SH KAV o Oy
ou N Z(a " Au(® D,
u=T" 1>0

Z 22 . ahk
- oT2i+1]

ah

1 2z—|—1 k

=-D” Z (D T[2i+1]
>0

=T

Since hi(T") only depends on the odd D-derivatives of T" we may add for free
the contribution of the even derivatives, and we obtain

SHKAY
ou

sKdV-B
SH

= DY (0 e pr

. —k (7.2.26)
. = o1l orT

for HZKdV_B S hi(T"). We can thus rewrite (7.2.24) and (7.2.25) as follows

sKdV—-B
or _ M (7.2.27)
oty oT
5HSKdV—B

= [s*0* +2D7'T'"D+2DT'D™'] -
orT

These equations look already to be in hamiltonian form, with Poisson structures
J; =1 and Jy = k20?2 + 2D 1T'D + 2DT'D~1. Notice that J; satisfies the
Jacobi identities trivially, since it is constant. It may seem at first odd that it
is not antisymmetric—but this is nothing new in supersymmetric hierarchies,
which can have both even and odd Poisson structures. The second structure
Jo may not seem obviously Poisson, but it is not hard to show that the Jacobi
identities are satisfied. Notice that Js also defines odd Poisson brackets which are
moreover nonlocal. This is again nothing new in supersymmetric hierarchies: the
first Poisson structure of sKdV is also nonlocal; although the flows, just like the
ones here, are local. Notice, parenthetically, that as expected Jo J° ! coincides
with the recursion operator (7.2.22) for sKdV-B.

Finally, notice that J; can be obtained from Jy by shifting 77 — T" + .
Since Jy is Poisson for any 7', it follows that J; and Jy are coordinated. Usual
arguments now imply that the conserved charges are in involution relative to
both Poisson structures. In summary, sKdV-B is an integrable bihamiltonian
supersymmetric hierarchy:.
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SKDV-B AS A REDUCTION OF SKP-TYPE HIERARCHIES

Since the sKdV-B flows are given by the isospectral deformations of the Lax
operator L = k20%+T", it is easy to see that sKdV-B is but a particular reduction
of the SKPy hierarchy. First of all it is clear that L has a unique square root of
the form

L'V =k0+ Y AT, (7.2.28)

i>1

where the A;(T") are d-differential polynomials in 7”. In terms of L'/2, the flows
defining sKdV-B are given by

1/2
agt ~ [Li‘l/Q,LW] . (7.2.29)

Notice that L'/2 is a special case of the Lax operator £ = k043 .+, Bi(T)D*7*
for the SKPs hierarchy, which was treated in Section 4.2 (x aside). Here, the
By (T) are D-differential polynomials in 7". Moreover the SKP5 flows are given by
(4.3.13) which agree (after relabeling and rescaling the times) with (7.2.29). In
other words, the submanifold of SKP2 operators of the form (7.2.28) is preserved
by the SKPy flows and, moreover, these flows agree with the ones defining sKdV-
B.

Furthermore, since the Lax operator L = k20 + T" can be ‘undressed’, one
can map the sKkdV-B hierarchy into the even part of the MRSKP hierarchy or,
equivalently, the Jacobian SKP hierarchy. To this effect, let us define an element
¢ of the Volterra group by L = ¢x20%¢~ . In terms of ¢, the sKdV-B flows can
be written as (up to k factors)

0
% x —(¢p0*" o™ H ¢ . (7.2.30)

n
This equation is then the one defining the even flows of the SKP hierarchy, when
we think of ¢ as an element of the larger superVolterra group.

SOME REMARKS ON ODD FLOWS

Although as proven in Proposition 7.2.13 the odd flows are not supersym-
metric, it is possible to modify them in such a way that they are. First of all
notice that the explicit expression (7.2.8) of ¢ as a function of the odd times
and the Ry can only be reconciled with its transformation law (7.2.12) under
supersymmetry, if 77 transforms under supersymmetry. To see this, let us plug
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(7.2.8) into the second equation of (7.2.12):

U= — Z(CsTk)Rk + ZTk(SRk

k>0 k>0
0
== (0)Rp — > 7 T > 7Ry by (7.2.15) and (7.2.8)
k>0 k>0 >0
OoR
= —Z(5Tk)3k - Z TS !
n—1
k>0 k,0>0
== (0m)Ry, by (7.2.7)
k>0
which implies that
577« = _5k71 . (7.2.31)
Consider now the flows given by
0 0
D, = — — . 7.2.32
" Toxr n Otn—1 ( )

From (7.2.31) and (7.2.14) it follows that these flows are supersymmetric. It is
moreover obvious that they commute with the even flows, and that all D,
(anti)commute among themselves. The remaining algebra of flows is

D}=—-0 and [Dy, D)=~ vn > 1, (7.2.33)

8tn—l

where we have used the fact that a%) = 0. This defines a supersymmetric exten-
sion of the sKdV-B hierarchy by odd flows.

It now remains to find a representation of the above algebra of flows in
superspace. The main obstacle lies in that the D,, explicitly depend on 7 which,
as (7.2.31) suggests, should be represented as —f. It is easy to check that the
representation induced from ¢ — ) and 71 — —6 is inconsistent, and we have
thus far been unable to find a consistent superspace representation for the odd
flows.

Alternatively one could try to induce odd flows via the embedding of the
sKdV-B hierarchy into the even part of (a reduction of) the Jacobian SKP hi-
erarchy. Nevertheless, via (7.2.30), we can understand these flows as flows in
the superVolterra group. It is easy to see that the flows of neither of the two
hierarchies preserve the Volterra subgroup where ¢ lives.
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7.3. NEW SUPERSYMMETRIC KDV HIERARCHIES

We have seen in the previous section how the new supersymmetric extension
of the KAV hierarchy that has appeared in the context a matrix-model-inspired
approach to 2d quantum supergravity is but the KdV hierarchy in disguise—the
KdV variable being replaced by an even superfield.

This result raises the question whether this supersymmetrization works for
all the generalized KdV hierarchies. This question is interesting in view of its
applications to noncritical superstrings, as well as from the the general theory
of supersymmetric integrable systems. As evinced in Chapter Three, one can
actually prove [70] that the supersymmetrization in [69] works only in the case
of the Boussinesq hierarchy, whereas a different and—in a sense—more natural
supersymmetrization works for all cases. These more general supersymmetric
hierarchies are in a sense not new, since one can prove that they are particular
reductions of the known supersymmetric KP hierarchies. Nevertheless their bi-
hamiltonian structures do not arise in this way, and the conserved charges are
constructed in a novel fashion that has features which make it interesting in its
own right.

To understand the idea behind these new supersymmetrizations, let us briefly
recall the main features of the generalized KdV hierarchies. The n-KdV hier-
archy is defined as the isospectral flows of the differential operator L = 0" +
Y oo u;0"% The flows are given by equations of the form

g—lt: = Pij(u) (7.3.1)
where the P;; are differential polynomials in the {w;}. These flows are then
extended as evolutionary derivations—i.e., derivations commuting with 0—to
the whole differential ring R[u] generated by the {u;}. Therefore, formally, the
n-KdV hierarchy is defined on any differential ring which is freely generated by
abstract variables {u;}. One can go a long way along this formal path. First of all,
one can prove that the flows commute. Furthermore, using the formal calculus
of variations, one can then define hamiltonian structures, construct conserved
charges in involution, and prove the formal integrability of the hierarchies. It is
only when discussing solutions of the evolution equations that one is forced to
choose a concrete realization for the differential ring R[u] as a subring, say, of
the (rapidly decaying, periodic,...) smooth functions on the real line.

As we have seen, the supersymmetric extension of the KdV hierarchy (n = 2)
discovered in [73]—hereafter referred to as sKdV-B—is obtained by replacing the
KdV variable u by the even superfield U’ = u + 6¢’. Since U’ freely generates
a differential ring, we are well within the domain of the formal KdV hierarchy
and, in particular, this means that all the above mentioned results carry over.
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There are two caveats, however. First of all, we want to interpret these
flows as those from a supersymmetric hierarchy. This means that we cannot
simply take the conserved charges to be the ones that would follow from the KdV
hierarchy with U’ replacing u, since these still have #-dependence. In fact, each
KdV conserved charge furnish us now with two conserved charges, since both
the 0-dependent and the #-independent parts are separately conserved. Only
one of them, however, is invariant under supersymmetry and is the one that we
would understand as the supersymmetric conserved charge. The second caveat
is that since it is &’ that enters in the superfield, the evolution equations will be
equations for ¢/. We must then make sure that the resulting equations for £ are
indeed local.

As we showed previously neither of these two problems prevent the super-
symmetrization of the KdV hierarchy, and one can prove along similar lines that
neither are the analogous problems present for the supersymmetrization of the
Boussinesq (n=3) hierarchy. For n > 3, however, the resulting equations for the
superpartners of the u; are not in general local and we are forced to conclude
that the supersymmetrization does not work.

One may wonder why it is that we replace the u; by U/ and not simply
by even superfields V; = u; + 6o;. From the point of view of supersymmetric
integrable systems, of course, there is no reason not to consider these hierarchies
which, in fact, appear much more natural [70]. However, they do not seem to
the ones that are interesting in view of their applications to superstring theory.
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SUMMARY OF CONTENTS

This thesis centers around the topics of integrable hierarchies and string
theory. It is based on my papers [69], [70], [52], and [65] written in 1993 and
1994 at the University of Bonn, where I am graduate student, and at Queen Mary
and Westfield of College (University of London) where I am visiting during the
present academic year. It also contains some new material not yet published.

The thesis is organized as follows. The first three chapters are expository in
nature. They attempt to place the current work in context: at first historically,
but then focusing on more technical aspects. Thus, Chapter One briefly recounts
the history of KdV-like systems from the time of its inception at the end of the
last century, until its most recent avatar in two-dimensional quantum gravity
and string theory. Chapter Two illustrates how the formalism used in the main
body of the thesis fits within the conceptual framework of hamiltonian dynamical
systems on (formal) Poisson manifolds. Then in Chapter Three we describe in
detail the Lax formalism and the Adler—Gel’fand-Dickey scheme for hierarchies
of KdV-type. Its purpose is mostly motivational but also serves to illustrate the
difference between the supersymmetric and nonsupersymmetric theories.

The last four chapters comprise the main body of this work. Chapter Four
develops the supersymmetric Lax formalism. It introduces the ring of formal
superpseudodifferential operators and the associated Poisson structures. It also
introduces three supersymmetric extensions of the KP hierarchy (MRSKP, SKPs,
and JSKP) to whose study Chapters Five and Six are devoted. In Chapter Five
we find the additional symmetries of these supersymmetric KP hierarchies. We
find that the algebra of additional symmetries are in all three cases isomor-
phic to the Lie algebra of superdifferential operators (also known as SWiy).
In Chapter Six we discuss a new reduction of SKPy and the relation between
MRSKP and SKPs is clarified. Finally Chapter Seven is devoted to the study
of sKdV-B—the (so far) only integrable hierarchy to have played a role in non-
critical superstring theory. We identify the hierarchy, prove its bihamiltonian
integrability, and extend it by odd flows. We close with a discussion of new inte-
grable supersymmetrizations of the KdV-like hierarchies suggested by the study
of sKdV-B.
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