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1 Introduction

These are typset notes based on a small graduate lecture course given by Professor José Figueroa-O’Farrill at
the University of Edinburgh in Autumn 2019.

2 Fibre bundles

Definition 2.1 (Fibre Bundle). A fibre bundle consists of a smooth surjection π : E → M between
manifolds E (the total space) and M (the base space) and such that ∀a ∈M there exists a neighbourhood
U 3 a and a diffeomorphism ϕ : π−1 → U ×F (a local trivialisation) for some manifold F (the typical
fibre) such that the following triangle commutes

π−1(U) U × F

U

ϕ

π
pr2

We often write F → E
π→M . If we can take U = M we say that E is a trivial bundle. Now suppose that

(U,ϕ), (V, ψ) are local trivialisations with U ∩V 6= ∅. Then we have two ways to view π−1(U ∩V ) as a product.

(U ∩ V )× F π−1(U ∩ V ) (U ∩ V )× F

U ∩ V

pr2
ψ

π

ϕ

pr2
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and hence

ψ ◦ ϕ−1 : (U ∩ V )× F → (U ∩ V )× F
(a, p) 7→ (a,Φ(a, p))

where Φ(a, ·) : F → F is a diffeomorphism, and hence it defines a transition function g : U ∩ V → Diff(F ).

Definition 2.2. Let F → E
π→ M . A collection {(Uα, ϕα)} of local trivialisations where M = ∪αUα is

called a trivialising atlas for E
π→M .

Let us introduce the notation Uαβ = Uα ∩ Uβ , etc. and gαβ the transition function defined by ϕα ◦ ϕ−1
β .

Fact 2.3. The transition functions satisfy the cocycle conditions

• ∀a ∈ Uα, gαα(a) = idF

• ∀a ∈ Uαβ , gαβ(a)gβα(a) = idF

• ∀a ∈ Uαβγ , gαβ(a)gβγ(a) = gαγ(a).

Definition 2.4. Let E
π→ M , E′

π′→ N be fibre bundles. A bundle map is a pair (Φ, φ) of smooth maps
Φ : E → E′, φ : M → N such that the following commutes

E E′

M N

Φ

π π′

φ

Since π is surjective, φ is uniquely determined by Φ, which is said to cover φ. Notice that Φ is fibre
preserving.

Definition 2.5. Let f : M → N be smooth and E
πE→ N a fibre bundle. Then we can define the pullback

bundle f∗E →M as the categorical pullback, i.e.

f∗E ≡ {(a, e) ∈M × E |πE(e) = f(a)}

Restricting the canonical projections from M × E we get maps π : f∗E → M , Φ : f∗E → E making the
following commute

f∗E E

M N

Φ

π πE

f

Taking a ∈ M , and (V, ψ) a local trivialisation for E → N with f(a) ∈ V , then (f−1(V ), ϕ) with ϕ :
π−1(f−1(V )) → f−1(V ) × F defined by ϕ(b, e) = (b, pr2(ψ(e)) is a local trivialisation for f∗E → M . This
shows that f∗E →M is a fibre bundle, and it has fibres (f∗E)a = Ef(a).

Definition 2.6. A section of a fibre bundle F → E
π→ M is a smooth map s : M → E such that

π ◦ s = idM .

Sections may not exist, but if the fibre bundle is trivial, then any smooth map σ : M → F defines a sections
by s(a) = (a, σ(a)). Since fibres are locally trivial, they admit local sections sα : Uα → π−1(Uα) via local smooth
maps σα : Uα → F . A section s : N → E can be pulled back via f : M → N to give a section f∗s : M → f∗E
via (f∗s)(a) = (a, s(f(a))).

Definition 2.7. Consider F → E
π→ M . Then the fibres Ea = π−1(a) ⊂ E are submanifolds of E. The

tangent space at e ∈ Ea is ϑe = ker((π∗)e : TeE → TeM) and is called the vertical subspace of TeE
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In the absence of any additional structure, there is no preferred complementary subspace of TeE.

Definition 2.8. A connection on E →M is a smooth choice of complementary subspace He ⊂ TeE i.e.
TeE = ϑe ⊕He. That is, a connection is a distribution H ⊂ TE

Note (π∗)e|He
: He

∼=→ Tπ(e)M , so H gives a choice of how to lift tangent vectors, and so curves, from M
to E.
Given a distribution one can ask whether it is integrable (in the sense of Frobenius), i.e. is E foliated by
submanifolds whose tangent spaces are H . We shall see that the obstruction to the integrability of H can be
interpreted as the ’curvature’ of the connection.

3 Principal fibre bundles

We now specialise to principal fibre bundles, so called because the typical fibre is a principally homogeneous
space for a lie group.

Definition 3.1. A Lie group consists of a manifold G which is also a group such that group multiplication
G×G→ G, (g, h) 7→ gh, and group inversion G→ G, g 7→ g−1, are smooth maps

For g ∈ G a Lie group, we define diffeomorphisms Lg : G → G, Lg(h) = gh, and Rg : G → G, Rg(h) = hg,
call left & right multiplication.

Definition 3.2. Recall that given a diffeomorphism F : M → N we define the pushforward F∗ : X(M)→
X(N) by, for ξ ∈ X(M), f ∈ C∞(N), (F∗ξ)(f) = ξ(f ◦ F ).

Remark. Note that given any smooth map of manifolds F : M → N , the derivative dF : TM → TN gives
a map ∀a ∈ M, dFa : TaM → TF (a)N which for ξ ∈ TaM, f ∈ C∞(N) acts as (dFa(ξ))(f) = ξ(f ◦ F ).
This is often written as F∗, but the two concepts are subtly different.

Definition 3.3. A vector field ξ ∈ X(G) is left invariant if ∀g ∈ G, (Lg)∗ξ = ξ. Similarly we define
right invariant.

Lemma 3.4. If ξ is a LIVF, ξg = (Lg)∗ξe, where e ∈ G is the identity.

Proof. Let f ∈ C∞(G). Then

(Lg)∗ξ = ξ ⇒ ξ(f ◦ Lg) = ξ(f)

Now evaluating at g ∈ G, ξg ∈ TgG so ξg(f ◦ Lg) = ((Lg)∗ξe)(f). Result follows.

It can be shown that the lie bracket of two left invariant vector fields is also left invariant.

Definition 3.5. The vector space of left invariant vector fields is the Lie algebra g of G.

Since a LIVF is uniquely determined by its value at the identity, we have that g ∼= TeG as a vector space, but
we can also transport the Lie bracket from g to TeG so they are isomorphic as algebras.

Definition 3.6. The maps (Lg−1)∗ : TgG → TeG ∼= g define a g-valued one form θ called the left
invariant Maurer-Cartan one-form. If ξ is a LIVF, θ(ξ) = ξe.

By definition, θ is left invariant.
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Theorem 3.7. The MC one form satisfies the structure equation

dθ = −1

2
[θ, θ]

i.e. for ξ, η ∈ X(G), dθ(ξ, η) = − [θ(ξ), θ(η)]

Proof. We will need the following result:

Claim: For θ ∈ Ω1(M), X,Y ∈ X(M)

dθ(X,Y ) = X(θ(Y ))− Y (θ(X))− θ([X,Y ])

To show this take coordinates such that θ = θadx
a, X = Xa∂a, Y = Y a∂a. Then

dθ(X,Y ) = (∂bθaX
cY d)(dxb ∧ dxa)(∂c, ∂d)

= ∂bθa(XbY a −XaY b)

= Xb∂b(θaY
a)− Y b∂b(θaXa)− θa(Xb∂bY

a − Y b∂bXa)

= X(θ(Y ))− Y (θ(X))− θ([X,Y ])

Now if X,Y are LIVFs, θ(X), θ(Y ) are constant, so on these

dθ(X,Y ) + θ([X,Y ]) = 0

Moreover for LIVFs θ([X,Y ]) = [θ(X), θ(Y )]. Now LIVFs span the space of vector fields, and all the
operations are linear, so we are done.

Proposition 3.8. If G is a matrix Lie group, θg = g−1dg.

Proof. In a matrix group, we have the correspondence X ∈ g ⇔ exp(tX) ∈ G. Take a basis {Ta} of TeG
and give g ∈ G coordinates xa if g = exp(

∑
a x

aTa). Then let g be constant and take a curve through g,
γ : R → G, γ(t) = exp [

∑
a(xa + tξa)Ta] with tangent vector g (

∑
a ξ

aTa) ∈ TgG. Under Lg−1 , this is a

curve through e with tangent vector (
∑
a ξ

aTa) ∈ TeG. Hence if we write ξ =
∑
a ξ

a ∂
∂xa for the the vector

generating γ we get

θg =
∑
a

Tadx
a = g−1dg

Every g ∈ G defines a diffeomorphism LgRg−1 : G→ G, h 7→ ghg−1. Since e = geg−1 its derivative belongs
to GL(TeG) = GL(g).

Definition 3.9. The adjoint representation of G on g is given by Adg = (Lg)∗(R
−1
g )∗

Lemma 3.10. R∗gθ = Adg−1 θ

Proof.

R∗gθhg = θhg(Rg)∗

= (L(hg)−1)∗(Rg)∗

= (Lg−1)∗(Lh−1)∗(Rg)∗

= (Lg−1)∗(Rg)∗(Lh−1)∗

= Adg−1 θh

4



Definition 3.11. The left action of a Lie group G on a manifold M is a smooth map G ×M → M ,
(g, a) 7→ ga satisfying the axioms ∀g, h ∈ G, ∀a ∈M

• g(ha) = (gh)a

• ea = a

Right action is defined equivalently.

Left and right actions are equivalent if we take ga = ag−1.

Definition 3.12. An action is transitive if the G-orbit of any point is M , equivalently ∀a, binM, ∃g ∈
G, b = ga

Definition 3.13. An action is free if the only element which fixes any point is the identity.

Definition 3.14. A G-torsor (or principally homogeneous G-space) is a manifold M on which G acts
freely and transitively

Given a G-torsor M , any point in M defines a diffeomorphism g ∼= M , and as such G-torsors are said to be like
a Lie group where we have ’forgotten’ the identity.

Definition 3.15. A principal G-bundle is a fibre bundle P
π→M together with a smooth rights G-action

(p, g) 7→ rg(p) which preserves fibres (π ◦ rg = π) and acts freely and transitively.

It follows that fibres are G-orbits and hence M = P�G. The condition of local triviality now says that the

local trivialisation π−1(U)
ϕ→ U × G are G-equivariant, i.e. where ϕ(p) = (π(p), γ(p)), γ : π−1(U) → G a

G-equivariant (γ ◦ rg = Rg ◦ γ) fibrewise diffeomorphism

Definition 3.16. A principal G-bundle is trivial is ∃ a G-equivariant diffeomorphism P
ψ→M ×G.

Proposition 3.17. A principal G-bundle P
π→M admits a section iff it is trivial

Proof. If P
π→M is trivial, ψ : P →M ×G defines a section s : M → P by s(a) = ψ−1(a, e).

Conversely, is s is a section, define ψ by ψ(p) = (π(p), χ(p)) where χ(p) is uniquely defined by p =
s(π(p))χ(p). Notice that since pg = s(π(p))χ(p)g = s(π(pg))χ(p)g so χ(pg) = χ(p)g.

Example 3.18. Let G be a Lie group and H ≤ G a closed subgroup. Then G
π→ G�H is a principal

H-bundle. Therefore homogeneous spaces are examples of principal bundles.

Since principal fibre bundles are locally trivial, they admit local sections. Let {(Uα, ϕα)} be a trivialising

atlas for G → P
π→ M . The canonical local sections sα : Uα → π−1(Uα) are given by sα(a) = ϕ−1

α (a, e). On
Uαβ we have sections sα, sβ . Writing ϕα(p) = (π(p), gα(p)) for gα : Uα → G equivariant we have that for
p ∈ π−1(Uαβ).

(π(p), gα(p)) = ϕα(p) = (ϕα ◦ ϕ−1
β ◦ ϕβ)(p) = (ϕα ◦ ϕ−1

β )(π(p), gβ(p))

⇒ (π(p), gα(p)g−1
β (p)︸ ︷︷ ︸

≡ĝαβ(p)

gβ(p)) = (ϕα ◦ ϕ−1
β )(π(p), gβ(p))

Note that ĝαβ(pg) = gα(pg)g−1
β (pg) = gα(p)gg−1gβ(p) = ĝαβ(p) and so is constant along the fibres. Hence

∃gαβ : Uαβ → G s.t. ĝαβ = π∗gαβ and (ϕα ◦ ϕ−1
β )(a, g) = (a, gαβ(a)g). It follows that the gαβ obey the cocycle
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conditions.
Now note gα ◦ sα : Uα → G is a constant map taking value e, and so letting p = sβ(a)

gα(p) = ĝαβ(p)gβ(p)⇒ gα(sβ(a)) = gαβ(a)(gβ ◦ sβ)(a)

= (gα ◦ sα)(a)gαβ(a)

= gα(sα(a)gαβ(a))

⇒ sβ(a) = sα(a)gαβ(a) as gα a diffeomorphism

4 Ehresmann Connections

Let P
π→ M be a principal G-bundle. Taking p ∈ P , the derivative (π∗)p : TpP → Tπ(p)M is a surjective

map.

Definition 4.1. The kernel Vp is called the vertical subspace. A vector field ξ ∈ X(P ) is called vertical
if ∀p ∈ P, ξp ∈ Vp.

Lemma 4.2. The Lie bracket of two vertical vector fields is vertical

Lemma 4.3. The vertical subspaces span a G-invariant integrable distribution

Proof. Note π ◦ rg = π ⇒ π∗(rg)∗ = π∗ ⇒ (rh)∗Vp = Vpg so G-invariant. Integrable by the previous
lemma.

Definition 4.4. An Ehresmann connection on P is a smooth choice of horizontal subspaces Hp ⊂
TpP s.t. TpP = Vp ⊕ Hp and (rg)∗Hp = Hpg. Equivalently an Ehresmann connection is a G-invariant
distribution H ⊂ TP complementary to V .

Example 4.5. A G-invariant Riemannian metric on P defines an Ehresmann connection by Hp = V ⊥p .

The G action on P defines a smooth map g → X(P ) assigning to every X ∈ g the fundamental vector
field ξX defined at p ∈ P by

(ξX)p =
d

dt

(
petX

)∣∣∣∣
t=0

Lemma 4.6. ξX is vertical

Proof.

π∗ ξX |p =
d

dt
π
(
petX

)∣∣∣∣
t=0

=
d

dt
π (p)

∣∣∣∣
t=0

= 0

As the G action is free, ∀p ∈ P the map X 7→ (ξX)p is an isomorphism g
∼=→ Vp.

Lemma 4.7. (rg)∗ξX = ξAdg−1 (X)
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Proof.

(rg)∗(ξX)p =
d

dt
rg
(
petX

)∣∣∣∣
t=0

=
d

dt

(
petXg

)∣∣∣∣
t=0

=
d

dt

(
pgg−1etXg

)∣∣∣∣
t=0

=
(
ξAdg−1 (X)

)
pg

Definition 4.8. The connection one form of a connection H ⊂ TP is the g-valued one form ω ∈
Ω1(P ; g) defined by

ω(ξ) =

{
X ξ = ξX
0 ξ ∈ H

Proposition 4.9. The connection one form obeys r∗gω = Adg−1 ◦ω

Proof. Let ξ be horizontal. Then (rg)∗ξ is also horizontal asH G-invariant. Then (r∗gω)(ξ) = ω((rg)∗ξ) = 0.
Note in this case (Adg−1 ◦ω)(ξ) = 0 too.
Now if ξ = ξX , (Adg−1 ◦ω)(ξ) = Adg−1(X) = ω(ξAdg−1 (X)) = ω((rg)∗ξX) = (r∗gω)(ξ)

It turn out we also have a converse:

Proposition 4.10. If ω ∈ Ω1(P ; g) satisfies r∗gω = Adg−1 ◦ω and ω(ξX) = X, then H ≡ kerω is a
connection on P .

Now define the pullback of ω along local sections to be Aα ≡ s∗αω ∈ Ω1(Uα; g).

Proposition 4.11. Let ωα ≡ Adg−1
α
◦π∗Aα + g∗αθ where θ is the LI Maurer-Cartan one form on G. Then

ωα = ω|π−1Uα

Proof. The proof will have two steps:

Claim: ω and ωα agree on the image of sα

Since π ◦ sα = id|Uα , TpP = Im(sα ◦ π)∗ ⊕ Vp for p = sα(a). Hence ∀ξ ∈ TpP, ∃! ξv ∈ Vp s.t.
ξ = (sα)∗π∗ξ + ξv. Then using gα(p) = (gα ◦ sα)(a) = e

ωα(ξ) = (π∗s∗αω)(ξ) + (g∗αθe)(ξ) (at p, Adg−1
α

= id)

= ω((sα)∗π∗ξ) + θe((gα)∗ξ)

= ω((sα)∗π∗ξ) + θe((gα)∗ξ
v) as (gα)∗(sα)∗ = (gα ◦ sα)∗ = 0

= ω((sα)∗π∗ξ) + ω(ξv)

= ω(ξ)

Claim: ω and ωα transform in the same way under the right G action.

r∗g(ωα)pg = Adgα(pg)−1 ◦r∗gπ∗s∗αω + r∗gg
∗
αθ

= Ad(gα(p)g)−1 ◦r∗gπ∗s∗αω + g∗αR
∗
gθ

= Adg−1gα(p)−1 ◦π∗s∗αω + g∗α(Adg−1 ◦θ)
= Adg−1

(
Adgα(p)−1 ◦π∗s∗αω + g∗αθ

)
= Adg−1 ◦(ωα)p

Hence we are done.

Now as ω is a global one form, ωα and ωβ must agree on Uαβ , allowing us to relate Aα and Aβ , namely on
Uαβ

Aα = s∗αωα = s∗αωβ = s∗α
(
Adgβ(sα)−1 ◦π∗Aβ + g∗βθ

)
= Adgαβ ◦Aβ + g∗βαθ
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Example 4.12. For matrix Lie groups, g∗βαθ = gβα−1dgαβ = −dgαβg−1
αβ , so

Aα = gαβAβg
−1
αβ − dgαβg

−1
αβ

Similarly, one can ask how {Aα} depends on the choice of local section.

Fact 4.13. If s′α is another local section for Uα, ∃hα : Uα → G s.t. s′α(a) = sα(a)hα(a) and then

A′α = Adh−1
α
◦Aα + h∗αθ

Idea. We now have three different ways to understand connections on a principal G-bundle P
π→ M ,

namely;

1. a G-invariant horizontal distribution H ⊂ TP

2. a one form ω ∈ Ω1(P ; g) satisfying ω(ξX) = X and r∗gω = Adg−1 ◦ω

3. a family of one forms
{
Aα ∈ Ω1(Uα; g

}
satisfying Aα = Adgαβ ◦Aβ + g∗βαθ on Uαβ 6= ∅

If P
π→M is a principalG-bundle, G-equivariant bundle diffeomorphisms are called gauge transformations

and one can ask how an Ehresmann connection transforms. LetH ⊂ TP be aG-invariant horizontal distribution.
Then let HΦ ≡ Φ∗H be the gauge-transformed distribution.

Lemma 4.14. HΦ ⊂ TP is an Ehresmann connection

Proof.

(rg)∗H
Φ
Φ(p) = (rg)∗Φ∗Hp = Φ∗(rg)∗Hp = Φ∗Hpg = HΦ

(Φ(pg) = HΦ
Φ(p)g

and HΦ is complementary to V because Φ∗TpP
∼=→ TΦ(p)P and Φ∗ preserves V = kerπ∗ because π ◦ Φ =

π

Exercise 4.15. Let Φ be a gauge transformation in a principal G-bundle P
π→ M . Let ξX denote a

fundamental vector fields for the G-action on P . Show that ξX is gauge invariant, i.e. Φ∗ξX = ξX .
Further, show that if ω is the connection one form for an Ehresmann connection H then (Φ−1)∗ω is the
connection one form for HΦ.

Let {Aα} ,
{
AΦ
α

}
be the gauge fields corresponding to the Ehresmann connections H, HΦ. Since Φ preserves

fibres it makes sense to restrict to π−1Uα. Applying the trivialisation ϕα(Φ(p)) = (π(p), gα(Φ(p))) which defines
φ̄α : π−1Uα → G by φ̄α(p) = gα(Φ(p))gα(p)−1.

Lemma 4.16. φ̄α is constant on the fibres

Proof.

φ̄α(pg) = gα(Φ(pg))gα(pg)−1

= gα(Φ(p)g)gα(pg)−1

= gα(Φ(p))g(gα(p)g)−1

= gα(Φ(p))gα(p)−1

= φ̄α(p)
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Hence φ̄α defines a smooth map φα : Uα → G. On overlaps Uαβ 6= φ we have that ∀a ∈ Uαβ , p ∈ π−1(a), hence

φα(a) = gα(Φ(p))gα(p)−1

= gα(Φ(p)) · gβ(Φ(p))−1gβ(Φ(p))︸ ︷︷ ︸
e

gβ(p)−1gβ(p)︸ ︷︷ ︸
e

gα(p)−1

= gαβ(a)φβ(a)gαβ(a)−1 since π(p) = π(Φ(p)) = a

Remark. We will see later that {φα} defines a section of a fibre bundle AdP on M associated to the
principal bundle P .

Exercise 4.17. Show that on Uα, AΦ
α = Adφα ◦ (Aα − φ∗αθ) = φαAαφ

−1
α − dφαφ

−1
α , which is a gauge

transform

5 Kozul Connections

Definition 5.1. A real, rank k, vector bundle E
π→ M is a fibre bundle whose fibres are k-dimensional

real vector spaces and whose local tirivialisations ψ : π−1U → U × Rk restrict fibrewise to isomorphisms
ψ : Ea → {a} × Rk of real vector spaces.

Let P
π→ M be a principal G-bundle and let ρ : G → GL(V ) be a Lie group homomorphism (i.e. a

representation of G), where V is a f.d. vector space. Since G acts freely on P , it also acts freely on P × V via
the right action

(p, v)g = (pg, ρ(g−1)v)

We let E ≡ P ×GV denote the quotient (P × V )�G via the above action. It is the total space of a vector bundle

E
$→M where

$ : P ×G V →M

[(p, v)] 7→ π(p)

Definition 5.2. E
$→M is called an associated vector bundle to the PFB P →M , associated via the

representation ρ.

Let {(Uα, ϕα)} be a trivialising atlas for P with transition function {gαβ : Uαβ → G} obeying the cocycle con-
ditions. We may then trivialise P ×G V on each Uα, and the transition functions are {ρ ◦ gαβ : Uαβ → GL(V )}.
More concretely we define P ×G V ≡ tαUα × V�∼ where (a, v) ∼ (a, ρ(gαβ(a))v)

Let P
π→ M be a G-PFB and E ≡ P ×G V

$→ M an associated VB with ρ : G → GL(V ). Let Γ(E) =
{s : M → E |$ ◦ s = idM} denote the C∞(M)-module of sections of E, and C∞G (P, V ) =

{
ζ : P → V | ∀g ∈ G, r∗gζ = ρ(g)−1 ◦ ζ

}
the G-equivariant functions P → V . We can give C∞G (P, V ) the structure of a C∞(M)-module by declaring
that for f ∈ C∞(M), fζ = π∗fζ

Proposition 5.3. There is a C∞(M)-module isomorphism

Γ(E) ∼= C∞G (P, V )

Proof. Let σ ∈ Γ(E). Let ψα : $−1Uα → Uα × V be a local trivialisation and define σα : Uα → V, (ψα ◦
σ)(a) = (a, σα(a)). On overlaps the local functions σα, σβ , are related by σα(a) = ρ(gαβ(a))σβ(a), where
gαβ are the transition functions of P →M . We now define ζα : π−1Uα → V by ζα((π∗sα)(p)) = σα(π(p))
and extend by ζα((π∗sα)(p)g) = ρ(g)−1σα(π(p)).
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Let π(p) = a ∈ Uαβ . Then

ζβ(p) = ζ(sα(a)gα(p)) = ζ(sβ(a)gβα(a)gα(p))

= ρ(gβα(a)gα(p))−1 ◦ σβ(a)

= ρ(gα(p))−1 ◦ ρ(gαβ(a)) ◦ σβ(a)

= ρ(gα(p))−1 ◦ σα(a)

= ρ(gα(p))−1ζα(sα(a))

= ζα(sα(a)gα(p)) = ζα(p)

The {ζα} are constructed to define a function ζ : P → V such that r∗gζ = ρ(g)−1 ◦ ζ. If f ∈ C∞(M), then
fσ ∈ Γ(E) and (fσ)α = fσα since ψα is fibrewise linear. Then by definition

ρ(gα(p))−1 ◦ π∗(fσα) = ρ(gα(p))−1 ◦ (π∗f)(π∗σα)

= (π∗f)ρ(gα(p))−1 ◦ (π∗σα)

= (π∗f)ζα(p)

so the map Γ(E)→ C∞G (P, V ), thus defined, is C∞(M)-linear.
Conversely, given a G-equivariant ζ : P → V , we define σ ∈ Γ(E) as follows: let sα : Uα → P be the
canonical local sections. Then let σα = s∗αζ. For a ∈ Uαβ ,

σβ(a) = ζ(sβ(a)) = ζ(sα(a)gαβ(a)) = ρ(gαβ(a))−1ζ(sα(a)) = ρ(gβα(a))σα(a)

Example 5.4. Let ω, ω′ be connection one forms for Ehresmann connections H ,H ′ on P → M . Then
r∗gω = Adg−1 ◦ω and similarly for ω′. Now if ξ is vertical, ω(ξ) = ω′(ξ), and hence τ ≡ ω − ω′ ∈ Ω1(P ; g)
is horizontal (i.e. τ(ξ) = 0 if ξ vertical).
Now let τα = s∗ατ ∈ Ω1(Uα; g). Then τα = s∗αω− s∗αω′ = Aα −A′α. On Uαβ, Aα = Adgαβ ◦Aβ + g∗βαθ, and

likewise for A′α, ⇒ τα = Adgαβ ◦τβ. Hence {τα} defines τ ∈ Ω1(M ; adP ) where adP ≡ P ×G g.

Example 5.5. Take H ≤ G closed and M = G�H. Then G
π→ M is a principal H-bundle. Let ρ :

H → GL(V ) be a representation. Then E ≡ G ×H V → M is a homogeneous vector bundle. Then
Γ(E) ∼=

{
f : G→ V | f(ph) = ρ(h)−1f(p)

}
as C∞(M)-modules. On Γ(E) we have a rep of G given by

(g · f)(g1) = g(g−1g1)

There is a sort of converse to the associated VB construction. If E
π→M is a real rank k vector bundle, we

may associate with it a principal GL(k,R)-bundle in one of two ways as follows:

1. Let {(Uα, ψα)} be a trivialising atlas for E, with ψα : π−1Uα → Uα × Rk and transition functions
gαβ : Uαβ → GL(k,R). We can then glue Uα ×GL(k,R) and Uβ ×GL(k,R) along Uαβ by

(a,A) ∼ (a, gαβ(a)A)

which is equivariant under right multiplication by GL(k,R). The resulting principal GL(k,R)-bundle is

denoted GL(E)
$→ M and it follows that E → M is the vector bundle associated to GL(E) view the

identity rep

2. The PFBGL(E)
$→M can understood as the bundle of frames of E

π→M . LetGL(E)a = {ordered bases for Ea}.
Let u = (u1, . . . , un) be a frame for Ea. Then $(u) = a defines $ : GL(E) → M . If A ∈ GL(k,R),
uA defined by (uA)i =

∑
j ujAji is another frame for Ea. Given frames u, u′ for Ea, ∃!A ∈ GL(k,R)

s.t. u′ = uA. Let (U,ψ) be a local trivialisation for E. We define a reference frame ū(a) for each
a ∈ U by ψ(ūi(a)) = (a, ei), where {ei} is the standard bases for Rk. This defines a trivialisation
Ψ : $−1U → U × GL(k,R) by Ψ(u) = (a,A(u)) where u is a frame for Ea and A(u) ∈ GL(k,R) is the
unique element sending u to ū(a). Now for B ∈ GL(k,R), we have

ū(a)A(uB) = uB = (ū(a)A(u))B ⇒ A(uB) = A(u)B
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Hence Ψ is GL(k,R)-equivariant. Let {(Uα,Ψα)} denote the reslting trivialising atlas. Then if a ∈ Uαβ
and u is a frame for Ea, then Ψα(u) = (a,Aα(u)) where ūα(u)Aα(u) = u. Now note

ūβ(a)i = ψ−1(a, ei)

= ψ−1
α ◦ ψα ◦ ψ−1

β (a, ei)

= ψ−1
α (a, gαβ(a)ei)

= ψ−1
α (a,

∑
j

ej(gαβ(a))ji)

=
∑
j

ψ−1
α (a, ej)gαβ(a)ji

=
∑
j

ūα(a)jgαβ(a)ji

⇒ ūβ(a) = ūα(a)gαβ(a)

⇒ Aα(u) = gαβ(a)Aβ(u)

Definition 5.6. Let E
π→M be a vector bundle. A Kozul connection on E is an R-bilinear map

∇ : X(M)× Γ(E)→ Γ(E)

(X, s) 7→ ∇Xs

satisfying that, ∀f ∈ C∞(M), X ∈ X(M), s ∈ Γ(E)

1. ∇fXs = f∇Xs

2. ∇X(fs) = X(f)s+ f∇Xs

Suppose that E = P ×G V for some G-PFB P
π→M Then an Ehresmann connection on P induces a Kozul

connection on E. For this it is convenient to use the C∞(M)-module isomorphism Γ(E) ∼= C∞G (P, V ) and we
will define ∇ on C∞G (P, V ):
Let H ⊂ TP be an Ehresmann connection. We define h : TpP → TpP to be the projector onto H along
ker(π∗). If we write ξ ∈ TpP as ξh + ξv where ξh ∈ Hp and π∗(ξ

v) = 0, then h(ξ) = ξh. Let h∗ : T ∗pP → T ∗pP
be the dual (i.e (h∗α)(ξ) = α(h(ξ))). Let X ∈ X(M). Then given p ∈ Pa let ξ ∈ TpP be s.t. π∗ξ = X(a). We
define ∇Xψ|p = (dψ)p(hξ), i.e. d∇ψ = h∗dψ. This is well defined because if π∗ξ = π∗ξ

′, hξ = hξ′. Further,
∇Xψ ∈ C∞G (P, V ) because the split TP = V ⊕H is G-invariant, and hence r∗gh

∗ = h∗r∗g . Hence

r∗gd
∇ψ = r∗gh

∗dψ

= h∗r∗gdψ

= h∗d(ρ(g)−1 ◦ ψ)

= ρ(g)−1 ◦ h∗dψ = ρ(g)−1d∇ψ

Proposition 5.7. ∇ defines a Kozul connection on E

11



Proof.

∇fXψ = dψ(h(fξ))

= dψ(h[(π∗f)ξ])

= π∗fdψ(hξ)

= f∇Xψ
∇X(fψ) = ∇X [(π∗f)ψ]

= d [(π∗f)ψ] (hξ)

= (π∗df)(hξ) + (π∗f)∇Xψ
= π∗(df(π∗hξ))ψ + f∇Xψ
= π∗(df(π∗ξ))ψ + f∇Xψ
= π∗(Xf)ψ + f∇Xψ
= X(f)ψ + f∇Xψ

We will now define a more calculationally useful formula for the Kozul connection of P ×G V induced by the
Ehresmann connection on P . Let ψ ∈ C∞G (P, V ) and let ξ ∈ X(P ). We decompose ξ = hξ+ ξv where π∗ξ

v = 0.
Then

dψ(hξ) = dψ(ξ − ξv) = dψ(ξ)− dψ(xiv)

The derivative ξvψ only depends on the value of ξv at a point, so we can take ξv to be the fundamental vector
field ξω(ξv) = ξω(ξ) corresponding to the G-action. Therefore

ξvψ = ξω(ξ)ψ =
d

dt
ψ ◦ rexp(tω(ξ))

∣∣∣∣
t=0

=
d

dt
ρ(exp(−tω(ξ))) ◦ ψ

∣∣∣∣
t=0

= −ρ(ω(ξ)) ◦ ψ

Therefore dψ(hξ) = dψ(ξ) + ρ(ω(ξ)) ◦ ψ, or abstracting ξ,

d∇ψ = dψ + ρ(ω) · ψ

Finally, we give a formula for ∇Xσ, where σ ∈ Γ(P ×G V ), now viewed as a family {σα : Uα → V } of functions
transforming in overlaps as σα(A) = ρ(gαβ(a))σβ(a);

d∇σα = d∇s∗αψ = d∇(ψ ◦ sα) = d(ψ ◦ sα) ◦ h
= d(s∗αψ) ◦ h = s∗α(dψ) ◦ h
= s∗αd

∇ψ = s∗α(dψ + ρ(ω) ◦ ψ)

= ds∗αψ + ρ(s∗αω) ◦ s∗αψ
= dσα + ρ(Aα) ◦ σα

Hence, if X ∈ X(M),

∇Xσα ≡ X(σα) + ρ(Aα(X)) · σα

Exercise 5.8. Show that ∇Xσα transforms like σα on overlaps, that is

∇Xσα = ρ(gαβ) ◦ ∇Xσβ

Note this justifies the name covariant derivative.

In summary, given a G-PFB, P → M , and a f.d. rep ρ : G → GL(V ), we construct a VB P ×G V → M .
Every VB is obtained in this way from its frame bundle. We then introduced the notion of a Kozul connection
on a VB and showed that an Ehresmann connection on P induces a Kozul connection on P ×G V . The converse
is also true: a Kozul connection on E induces an Ehresmann connection on GL(E).
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6 Curvature

Let P
π→M be a principal G-bundle and ρ : G→ GL(V ) a Lie group homomorphism. Let E ≡ P ×G V

$→M
be the associated VB. We saw in the last lecture that we have a C∞(M)-module isomorphism

{s : M → E |$ ◦ s = idM} = Γ(E) ∼= C∞G (P, V ) =
{
ζ : P → V | r∗gζ = ρ(g−1) ◦ ζ

}
with module actions f · ζ = (π∗f)ζ.
We wish to generalise this from functions to forms. We define Ωk(P, V ) to be the k-forms on P with values in
V . If p ∈ P, ω ∈ Ωk(P, V ), then ωp : ΛkTpP → V is linear. Let ΩkG(P, V ) ⊂ Ωk(P, V ) denote those V -valued
k-forms ω which are both

• horizontal: ∀ξ vertical, iξω = 0

• invariant: ∀g ∈ G, r∗gω = ρ(g−1) ◦ ω.

Forms ω ∈ Ωk(P, V ) are said to be basic since they come from bundle valued forms on the base. Indeed, we
have

Proposition 6.1. There is an isomorphism of C∞(M)-modules

ΩKG (P, V ) ∼= Ωk(M,P ×G V )

where for ω ∈ ΩkG(P, V ), f · ω = (π∗f)ω

Proof. Similar to k = 0 case. Define σ ∈ Ωk(M,P ×G V ) locally by
{
σα ∈ Ωk(Uα, V )

}
obeying σα(a) =

ρ(gαβ(a))σβ(a). Then ζα(p) = ρ(gα(p))−1 ◦π∗σα is clearly horizontal. It can be shown to be invariant and
that ∀p ∈ π−1Uαβ , ζα(p) = ζβ(p). Conversely, if ζ ∈ ΩkG(P, V ), we define σα = s∗αζ and one can show that
∀a ∈ Uαβ , σα(a) = ρ(gαβ(a))σβ(a)

If σ ∈ Γ(P ×G V ), d∇σα = ρ(gαβ)d∇σβ , and hence d∇σ ∈ Ω1(M,P ×G V ).

Lemma 6.2. Let α ∈ ΩkG(P, V ). Then h∗dα ∈ Ωk+1
G (P, V ).

Proof. h∗dα is horizontal by construction, so we check invariance;

r∗gh
∗dα = h∗r∗gdα = h∗d(r∗gα) = h∗d(ρ(g)−1 ◦ α) = ρ(g)−1 ◦ h∗dα

Definition 6.3. Let ω ∈ Ω1(P, g) be the connection one form of an Ehresmann connection H ⊂ TP . Its
curvature is Ω ≡ h∗dω.

Lemma 6.4. Ω ∈ Ω2
G(P, V ).

Proof. Horizontal by construction, and by the same calculation as the lemma above it is invariant because
ω is.

Proposition 6.5. Ω = 0 iff H ⊂ TP is (Frobenius) integrable.

Proof. we see

Ω(ξ, η) = dω(hξ, hη) = hξ ω(hη)︸ ︷︷ ︸
=0

−hη ω(hξ)︸ ︷︷ ︸
=0

−ω([hξ, hη])

= ω([hξ, hη])
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Hence

Ω = 0⇔∀ξ, η [hξ, hη] is horizontal

⇔ [H ,H ] ⊂H

⇔H ⊂ TP is integrable.

Proposition 6.6 (Structure equation). Ω = dω + 1
2 [ω, ω]

Proof. We need to show Ω(ξ, η) = dω(ξ, η) + [ω(ξ), ω(η)].
Let ξ, η be horizontal. Then hξ = ξ and hη = η, . hence Ω(ξ, η) = dω(ξ, η) and ω(ξ) = 0 = ω(η).
Let η be horizontal and ξ = ξX be vertical. Then hξ = 0, hη = η, and ω(η). Hence we need

0 = dω(ξX , η) = −ηω(ξX)− ω([ξX , η]) = − ηX︸︷︷︸
=0

−ω([ξX , η])

i.e that [ξX ,H ] ⊂H . This is the case as H is invariant.
Let ξ = ξX , η = ξY vertical. Then hξX = 0 = hξY and ω(ξX), ω(ξY ) = Y . So we must show that

0 = dω(ξX , ξY ) + [ω(ξX), ω(ξY )]

= ξXY − ξYX − ω([ξX , ξY ]) + [X,Y ]

= −ω(ξ[X,Y ]) + [X,Y ]

so done.

Corollary 6.7 (Bianchi Identity). h∗dΩ = 0

Proof.

h∗dΩ = h∗d(dω +
1

2
[ω, ω]) + h∗ [dω, ω] = [h∗dω, h∗ω] = 0

since h∗ω = 0

Let’s define d∇ : ΩkG(P, V )→ Ωk+1
G (P, V ) by d∇ = h∗d. Then, unlike d, d∇ need not be a differential, and the

obstruction is the curvature:

Proposition 6.8. ∀α ∈ ΩkG(P, V ), d∇(d∇α) = ρ(Ω) ∧ α

Proof.

d∇α = dα+ ρ(ω) ∧ α
⇒ d∇(d∇α) = d(dα+ ρ(ω) ∧ α) + ρ(ω) ∧ (dα+ ρ(ω) ∧ α)

= ρ(dω) ∧ α− ρ(ω) ∧ dα+ ρ(ω) ∧ dα+ ρ(ω) ∧ ρ(ω) ∧ α

= ρ(dω) ∧ α+
1

2
[ρ(ω), ρ(ω)] ∧ α

= ρ(dω +
1

2
[ω, ω]) ∧ α

= ρ(Ω) ∧ α
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Exercise 6.9. Write Fα = s∗αΩ. Express Fα in terms of Aα = s∗αω and relate Fα, Fβ on Uαβ 6= ∅

7 Homogeneous spaces and Invariant Connections I

Let G be a Lie group acting transitively on a manifold M , Pick a ∈M and let H ⊂ G be the stabiliser subgroup.

It is a closed subgroup, and then M ∼= G�H, where the diffeomorphism is G-equivariant and G � G�H is induced
by left multiplication in G. If g ∈ G, we let φg : M → M denote the corresponding diffeomorphism. If X ∈ g,
we define a vector field ξX ∈ X(M) by

(ξXf)(m) =
d

dt
f
(
φexp(−tX)(m)

)∣∣∣∣
t=0

Then [ξX , ξY ] = ξ[X,Y ].
Since H stabilises a ∈ M , ∀h ∈ H, (φh)∗ : TaM → TaM , and we get a Lie group homomorphism λ : H →
GL(TaM) called the linear isotropy representation. We will use the same notation for the induced Lie
algebra rep λ : h→ gl(TaM). Evaluating at a ∈M , we get a surjective linear map g→ TaM, X 7→ ξX |a whose
kernel is h.

Definition 7.1. We say that G�H is reductive if the short exact sequence

0→ h→ g→ TaM → 0

splits as H-modules. In other words if ∃m ⊂ g such that g ⊕ m and ∀h ∈ H, Adh : m → m. In that case
TaM ∼= m as H-modules.

If g ∈ G and φg ∈ Diff(M), we define φg · f = f ◦ φg−1 and φg · ξ = (φg)∗ξ where

((φg)∗ξ)a = ((φg)∗)φ−1
g (a)ξφ−1

g (a)

It follows that

φg · (Xf) = (φg ·X)(φg · f)

φg · (fX) = (φg · f)(φg ·X)

Now let ∇ be an affine connection, (i.e. ∇fXY = f∇XY , ∇X(fY ) = X(f)Y + f∇XY ) . Let φ ∈ Diff(M).
Define ∇φ by

∇φXY = φ · ∇φ−1·X(φ−1 · Y )

Lemma 7.2. ∇φ is an affine connection

Proof.

∇φfXY = φ · ∇φ−1·(fX)(φ
−1Y )

= φ · ∇(φ−1·f)(φ−1·X)(φ
−1Y )

= φ ·
(
φ−1 · f∇φ−1·X(φ−1 · Y

)
= (φ · φ−1f)(φ · ∇φ−1X(φ−1 · Y )

= f∇φXY
∇+Xφ(fY ) = φ ·

(
∇φ−1·Xφ

−1(fY )
)

= φ ·
(
∇φ−1·X(φ−1f)(φ−1Y )

)
= φ ·

(
(φ−1X)(φ−1f)(φ−1Y ) + (φ−1f)∇φ−1X(φ−1Y )

)
= (φ · φ−1 ·X(f))(φ · φ−1 · Y ) + (φ · φ−1 · f)∇φ−1X(φ−1Y )

= X(f)Y + f∇φXY
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Definition 7.3. An affine connection ∇ on a reductive homogeneous M = G�H is said to be G-invariant
if ∀g ∈ G, ∇φg = ∇. i.e

φg · ∇XY = ∇φgX(φgY )

If H = {e} ,M = G, then ∇ is left invariant if

Lg · ∇XY = ∇Lg·X(Lg · Y )

Suppose that X,Y are left invariant , so that Lg ·X = X,Lg · Y = Y . In that case, the left invariance of
∇ implies that ∇XY is also left invariant. Now, on a Lie group we may trivialise the tangent bundle via left
translations. That means that we have a global fram (X1, . . . , Xn) consisting of left invariant vector fields. The
connection is therefor uniquely determined by n3 numbers Γkij defined by

∇XiXj =
∑
k

ΓkijXk

These are the components relative to the basis {Xi} of a linear map Λ : g→ gl(g). The torsion and curvature
tensors are also left-invariant and are given in terms of Λ by

T (X,Y ) = ΛXY − ΛYX − [X,Y ]

R(X,Y )Z = [ΛX ,ΛY ]Z − Λ[X,Y ]Z

for LI X,Y, Z ∈ X(G). We see that curvature measure the failure of Λ to be a Lie algebra homomorphism.
In particular, taking Λ = 0, we see tat there exists a flat connection with torsion given by T (X,Y ) = − [X,Y ]
relative to which LI vf on G are parallel (i.e. ∇X = 0). Of course, there exists another flat connection
annihilating the right-invariant vector fields.

8 Invariant Connections

What did we do last time? We were looking at Homogeneous spaces M ≡ G�H, H ≤ G a closed subgroup. We
had fibre

H → G
π→M

and for g ∈ G we have φg : M →M acting by multiplication, i.e. φg(a) = g · a. As a result of the quotient have
eH = o ∈M s.t

∀h ∈ H φh(o) = o

Then

(φh)∗ : ToM → ToM

Hence we may make the following def:

Definition 8.1. The linear isotropy representation

λ : H → GL(ToM)

is given by λh = (φh)∗.

We also have the map

ξ : g→ X(M)

X 7→ ξX

s.t. [ξX , ξY ] = ξ[X,Y ]. Composing with evaluation yields

evo ◦ ξ : g→ ToM
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where ker(evo ◦ ξ) = h ⊂ g. This is bijective so in fact

ToM ∼= g�h

and we get commuting diagram

ToM ToM

g�h g�h

λh

∼= ∼=
Ad(h)

Definition 8.2. An affine connection ∇ on TM is G-invariant if

∀g ∈ G, ∇φg = ∇
φg∇ξη = ∇φgξ(φgη)

If H = {e} ,M = G, then ∇ is left invariant if for all left invariant vector fields ξX , ξY ∇ξX ξY is also LI.
This is then uniquely determined by its value at e. Hence ∇ defines a bilinear map

g× g
α→ g

(X,Y ) 7→ ∇ξX ξY |e

We can then curry a map as given α : g× g→ g we can get

Λ : g→ End(g)

X 7→ ΛX

where ΛX(Y ) = α(X,Y ).

Exercise 8.3. Show that the torsion T and curvature R of Λ are left invariant and given by

T (X,Y ) = ΛXY − ΛYX − [X,Y ]

R(X,Y )Z = [ΛX ,ΛY ]Z − Λ[X,Y ]Z

Note R is the obstruction to Λ being a Lie algebra homomorphism.

Claim: ∃ a LI connection ∇ corresponding to Λ = 0.

Such Λ is flat, but has torsion T (X,Y ) = − [X,Y ]. As such ∇ is characterised by ∀ LI ξ, ∇ξ = 0. Now let
H 6= {e} be closed and reductive: g = h ⊕ m where AdH(m) ⊂ m. Note m ∼= g�h, so in the previous case

m ∼= ToM

Aside. There is a ”holonomy principle” that{
G-invariant tensor fields on G�H

}
evo↔ {Ad(H)-invariant tensor on m}

This comes about, as if we take a tensor T at o, we can define a tensor field on G�H by

T (a) = φgT

for and g ∈ G s.t. φgo = a. Then if we have another representative g′ then

g−1g′ ∈ H ⇔ φg−1g′o = o

so

T = φg−1g′T
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Claim: An invariant connection ∇ is determined by a bilinear map

α : m×m→ m

which is H invariant, the Nomizu map.

We can take natural coordinates for M in the neighbourhood V ⊂ m of o by exponentiating m. The
projection π is a local diffeo on U = exp(V ).
In a basis for m, {ei},

V → U∑
xiei 7→ exp

(∑
xiei

)
Now ∀g ∈ U , π(g) = φg · o, Let V = {φg · o|g ∈ U}. For X ∈ m define ξX ∈ X(V ) by

(ξX)φgo ≡ ((φg)∗)o(π∗)eX

= ((φg ◦ π)∗)eX

= ((π ◦ Lg)∗)eX = (π∗)gX
L
g

where XL is the LIVF defined by XL
∣∣
e

= X. Hence ξX is π-related to XL. Then [ξX , ξY ] is π-related to[
XL, Y L

]
= [X,Y ]

L
.

Now let W ⊂ V s.t. ∀h ∈ H, AdhW ⊂ V , and def W accordingly. Then for h ∈ H, φh : W → V . As such

φhφg · o = φhφgφh−1φh · o
= φhgh−1 · o ∈ V .

We will now need the following lemma

Lemma 8.4. ∀g ∈ exp(W ), h ∈ H,

(φh)∗ξX = ξAdhX

at φgo, i.e. at all point in V .

Proof.

[(φh)∗ξX ]φhφgo = (φh)∗(ξX)φgo

= (φh)∗(φg)∗π∗X

= (φhg)∗π∗X

= (φhgh−1)∗(φh)∗π∗X

= (ξAd(h)X)φhgh−1o = (ξAdhX)φhφgo

recalling the commuting diagram

ToM ToM

m m

(φh)∗

Ad(h)

π∗ π∗

Lemma 8.5. Let X,Y ∈ m, and ξX , ξY ∈ X(V ). Then [ξX , ξY ]|o = π∗ [X,Y ]m

Proof. We saw above that [ξX , ξY ] is π-related to
[
XL, Y L

]
= [X,Y ]

L
. Hence [ξX , ξY ] = ξ[X,Y ] and

evaluating at o ∈M gives

[ξX , ξY ]|o = ξ[X,Y ]h

∣∣∣
o

+ ξ[X,Y ]m

∣∣
o

= ξ[X,Y ]m

∣∣
o

= π∗ [X,Y ]m
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Theorem 8.6 (Nomizu). There is a bijective correspondence

{G-invariant affine connections on M} ↔ {Ad(h)-invariant bilinear maps α : m×m→ m}

given by α(X,Y ) = ∇ξX ξY |o

Note ∃! G-invariant connection ∇ with α = 0, and this is called the canonical connection. If you curry this
map again you can show

T (X,Y ) = α(X,Y ) = α(Y,X)− [X,Y ]m
R(X,Y )Z = α(X,α(Y, Z))− α(Y, α(X,Z))− α([X,Y ]m , Z)− [X,Y ]h Z

If α = 0 we get

T (X,Y ) = − [X,Y ]m
R(X,Y ) = − [X,Y ]h

If T = 0, M is said to be symmetric.

9 Cartan Connections

Again consider homogeneous reductive spaces

H G

M = G�H

π

With a local section σ : U → G we can pull back the LI MC 1-form ϑG ∈ Ω1(G; g)

σ∗ϑG ∈ Ω1(U ; g)

Recall the MC 1-form satisfies structure equation s

dϑG +
1

2
[ϑG, ϑG] = 0

Then given two such sections σi we have

∀a ∈ U, σ2(a) = σ1(a)h(a)

for some h : U → H, a uniquely defined function.

Lemma 9.1.

σ∗2ϑG = Ad(h−1) · σ∗1ϑG + h∗ϑH

Proof. We will notationally use the idea of matrix groups but in general the proof works. Then

σ∗ϑg = σ−1dσ .

Then

σ∗2ϑG = σ−1
2 dσ2

= (σ1h)−1d(σ1h)

= h−1σ−1
1 (dσ1h+ σ1dh)

= h−1(σ−1
1 dσ1)h+ h−1dh

so done.
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As we are in the reductive case, g = h⊕m and we can decompose. Write σ∗1ϑG = θ1 +ω1 for θ1 ∈ Ω1(U,m), ω1 ∈
Ω1(U, h). Then

θ2 + ω2 = Ad(h)−1(θ1 + ω1) + h∗ϑH

so

θ2 = Ad(h)−1θ1

ω2 = Ad(h)−1ω1 + h∗ϑH

decomposing. Hence θ2 transforms as a tensor, ω2 as a gauge field. Now if we let σ = σ1 and the structure
equation becomes

d(θ + ω) +
1

2
[θ + ω, θ + ω] = 0

dθ + dω +
1

2
[θ, θ] +

1

2
[ω, ω] + [ω, θ] = 0

As such decomposing

dθ +
1

2
[θ, θ]m + [ω, θ] = 0 ⇒ Θ ≡ dθ + [ω, θ] = −1

2
[θ, θ]m

dω +
1

2
[θ, θ]h +

1

2
[ω, ω] = 0 ⇒ Ω ≡ dω +

1

2
[ω, ω] = −1

2
[θ, θ]h

As such

Θ(ξX , ξY ) = − [X,Y ]m
Ω(ξX , ξY ) = − [X,Y ]h

Gauge fields for the canonical invariant connection on G�H are σ∗ϑG.
With this motivation with us, the Cartan connections are going to be generalisation of these where in the
gauge field descriptions these are local 1-forms on the base. The Cartan viewpoint is to view TM not as a
linear rep of GL(n,R), but as a homogeneous space of the affine group A(n,R) ∼= GL(n,R) n Rn such that

TaM ∼= A(n,R)�GL(n,R).

Definition 9.2. A Cartan gauge (def from Sharpe, Jose doesn’t like) with model G�H on M is a pair
(U, θ) where U ⊂M open and θ ∈ Ω1(U, g) satisfying regularity

TaM
θa→ g

pr→ g�h

is an isomorphism ∀a ∈ U .

This is the analogue of a chart

Definition 9.3. A Cartan atlas is a collection of Cartan gauges {(Uα, θα)} s.t

•
⋃
α Uα = M

• on Uαβ

θβ = Ad(h−1
αβ)θα + h∗αβϑH

for some hαβ : Uαβ → H.

This is very analogous to atlases.

Definition 9.4. Two atlases are equivalent if their union is an atlas.
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Definition 9.5. A Cartan structure on M is an equivalence class (equivalently maximal atlas) of Cartan
atlases. A Cartan geometry is a manifold M together with a Cartan structure.

Definition 9.6. The curvature of a Cartan gauge (U, θ) is Ω ∈ Ω2(U, g) given by

Ω = dθ +
1

2
[θ, θ]

If I have a Cartan atlas, I can ask how respective curvatures Ωα change on overlaps.

Lemma 9.7. On Uαβ

Ωβ = Ad(h−1
αβ)Ωα

Proof.

θβ = Ad(h−1
αβ)θα + h∗αβϑH

⇒ dθβ +
1

2
[θβ , θβ ] = d

Ad(h−1
αβ)θα︸ ︷︷ ︸

h−1
αβθαhαβ

+h∗αβϑH

+
1

2

[
Ad(h−1

αβ)θα + h∗αβϑH ,Ad(h−1
αβ)θα + h∗αβϑH

]

= Ad(h−1
αβ)dθα −

[
Ad(h−1

αβ)θα, h
∗
αβϑH

]
− 1

2
h∗αβ [ϑH , ϑH ] +

1

2
Ad(h−1

αβ) [θα, θα]

+
1

2

[
h∗αβϑH , h

∗
αβϑH

]
+
[
Ad(h−1

αβ)θα, h
∗
αβϑH

]
= Ad(h−1

αβ)

(
dθα +

1

2
[θα, θα]

)

Hence setting Ωα = 0 is an extrinsic statement of an atlas.

Definition 9.8. A Cartan structure is flat if ∀α, Ωα = 0

Example 9.9. Flat Cartan structures:

• G→ G�H with (Uα, σ
∗
αϑG)

• an open subset V ⊂ G�H as above.

• Γ ⊂ G acting by covering transformations, locally like G�H.

Definition 9.10. A Klein geometry G�H has kernel K: the largest subgroup of H that is normal in G.

If K = 1 we say that G�H is effective. If K is discrete we say the geometry is locally effective.

Lemma 9.11. If K 6= 1 then
(G�K)�

(H�K)
is effective.

Proposition 9.12. If G�H is effective, and ∃k : U → H s.t. θ = Ad(k−1) · θ + k∗ϑH , then k = 1.
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This means that, given a Cartan atlas {(Uα, θα)} modelled on an effective G�H, then in overlaps Uαβ ,

θβ = Ad(h−1
αβ) ◦ θα + h∗αβϑH for a unique hαβ : Uαβ → H. Indeed if θβ = Ad(h̃−1

αβ) ◦ θα + h̃∗αβϑH , then letting

k = h̃−1
αβhαβ we would have

θα = Ad(h̃−1
βα) ◦ θβ + h̃∗βαϑH

⇒ θβ = Ad(h−1
αβ) ◦

[
Ad(h̃−1

βα) ◦ θβ + h̃∗βαϑH

]
+ h∗αβϑH

= Ad(k−1) ◦ θβ + Ad(h−1
αβ) ◦ h̃∗βαϑH + h∗αβϑH︸ ︷︷ ︸

k∗ϑH

It follows from uniqueness then that {hαβ : Uαβ → H} defines a (Cech) cocycle. Therefore they are the transition

functions of a principle H-bundle P
π→ M , where P = tα({α} × Uα ×H)�∼, (α, a, h) ∼ (β, a, h−1

αβ(a)h), and

π(α, a, h) = a. The right action is given by rh[(α, a, h̃)] = [(α, a, h̃h)]. This is well defined since the identification
uses left multiplication.

Let X ∈ h. Then XL ∈ X(H) is the corresponding LIVF. We extend it to U×H as (0, XL) ≡ ξX ∈ X(U×H).
Since XL is LI and the identifications involve left multiplication the vector fields ξX glue to give a well defined
vector field ξX ∈ X(P ). We then have

Lemma 9.13. Let rh : P → P denote the right action of h ∈ H on P . Then ∀X ∈ h, (rh)∗ξX = ξAd(h)−1X .

Proof. It is sufficient to check locally on U×H. Here rh = id×Rh where Rh : H → H is right multiplication
by h. Let Lh : H → H be left multiplication and then on U ×H we have

(rh)∗ξX = (id×Rh)∗(0, X
L)

= (0, (Rh)∗X
L)

= (0, (rh)∗(Lh−1)∗X
L) since XL is LI

= (0, (Ad(h−1) ·X)L)

= ξAd(h)−1X

The Cartan atlas (Uα, θα) does not first just give P
π→M , but also a one-form ω ∈ Ω1(P ; g) defined locally

by

ω : T(a,h)(Uα ×H)→ TaUα × h)→ g

(v, y) 7→ (v, ϑH(y)) 7→ Ad(h−1)θα(v) + ϑH(y) ≡ ωα(v, y)

On overlaps, we also have ωβ(v, y) = Ad(h−1)θβ(v)+ϑH(y). The transition function is then Uαβ×H
fαβ→ Uαβ×H

sending (a, h) 7→ (a, hαβ(a)−1h).
We will claim that the ωα glue together properly to give a consistent ω. To prove this we will need a

preparatory lemma:

Lemma 9.14. Let µ : H ×H → H and i : H → H denote multiplication and inversion as groups maps
on H. Letting ϑH ∈ Ω1(H; h) be the LI MC one-form we have

∀v ∈ T(h1,h2)(H ×H), (µ∗ϑH)(v) = Ad(h−1
2 )ϑH((pr1)∗v) + ϑH((pr2)∗v)

∀v ∈ ThH, (i∗ϑH)(v) = −Ad(h)ϑH(v)

Proof. It is simpler notationally for matrix groups where ϑH |h = h−1dh. Hence

i∗ϑH |h = hdh−1 = −hh−1dhh−1 = −Ad(h) ϑH |h

Moreover we have

µ∗ ϑH |(h1,h2) = (h1h2)−1d(h1h2) = h−1
2 h−2

1 dh1h2 + +h−1
2 dh2 = Ad(h−1

2 ) ϑH |h1
+ ϑH |h2
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Now we are ready to state what we want:

Proposition 9.15. The following diagram commutes:

TaUαβ × Thαβ(a)−1hHTaUαβ × ThH

g

(fαβ)∗

ωβωα

Proof. We notice that fαβ(a, h) = (a, hαβ(a)−1h) = (id ◦pr1, µ ◦ (i ◦ hαβ ◦ pr1 × pr2))(a, h), so that if
(v, y) ∈ TaUαβ × ThH, (fαβ)∗(v, y) = (v, µ∗(i∗ ◦ (hαβ)∗v, y)) ∈ TaUαβ × Thαβ(a)−1hH. Hence

(ωβ ◦ (fαβ)∗)(v, y) = ωβ(v, µ∗(i∗ ◦ (hαβ)∗v, y))

= Ad(hαβ(a)−1h)−1θβ(v) + ϑH(µ∗(i∗ ◦ (hαβ)∗v, y))

Using the lemma we have that

ϑH(µ∗(i∗ ◦ (hαβ)∗v, y)) = (µ∗ϑH)(i∗(hαβ)∗v, y)

= Ad(h−1)ϑH(i∗(hαβ)∗v) + ϑH(y)

ϑH(i∗(hαβ)∗v) = (i∗ϑH)(h∗αβv)

= −Ad(hαβ(a))(h∗αβϑH)(v)

Hence

(ωβ ◦ (fαβ)∗)(v, y) = Ad(h)−1 Ad(hαβ(a))θβ(v)−Ad(h)−1 Ad(hαβ(a))(h∗αβϑH)(v) + ϑH(y)

= Ad(h)−1 Ad(hαβ(a))
[
θβ(v)− (h∗αβϑH)(v)

]
+ ϑH(y)

= Ad(h)−1 ◦ θα(v) + ϑH(y)

= ωα(v, y)

Definition 9.16. The one-form ω ∈ Ω1(P ; g) is called a Cartan connection

Proposition 9.17. The Cartan connection ω ∈ Ω1(P ; g) obeys the following:

1. ∀p ∈ P, ωp : TpP → g is a vector space isomorphism

2. ∀h ∈ H, r∗hω = Ad(h−1) ◦ ω

3. ∀X ∈ h, ω(ξX) = X

Proof. We may separate the proof:

1. dimP = dimH + dimM = dim h + dim g�h = dim g, so it suffices to show that ωp is injective. Now

if (v, y) ∈ TaU × ThH is such that ω(v, y) = Ad(h−1)θ(v) + ϑH(y) = 0, we have Ad(h−1)θ(v) =
−ϑH(y) ∈ h and hence θ(v) ∈ Ad(h)h = h ⇒ prg�h

θ(v) = 0. By the regularity property of θ, v = 0.

Hence ϑH(y) = 0, but as ϑH is injective, we have y = 0

2. It is sufficient to check in a Cartan gauge (U, θ). Let (v, y) ∈ TaU × ThH. Then for k ∈ H:

(r∗kω)(v, y) = ω(v, (Rk)∗y) = Ad(hk)−1 ◦ θ(v) + ϑH((Rk)∗y)
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and using R∗kϑH = Ad(k−1) ◦ ϑH

(r∗kω)(v, y) = Ad(k−1) Ad(h)−1θ(v) + Ad(k−1)ϑH(y)

= Ad(k−1)
[
Ad(h)−1θ(v) + ϑH(y)

]
= Ad(k−1)ω(v, y)

3. In a Cartan chart ξX = (0, XL) ∈ X(U ×H), hence

ω(ξX) = Ad(h)−1θ(0) + ϑH(XL) = 0 +X = X

Remark. Properties 2 and 3 are reminiscent of an Ehresmann connection except that ω takes values in g
not h.

Notice that if {(Uα, θα)} is a Cartan atlas trivialising P , then if sα : Uα → P |Uα are the canonical sections,
sα(a) = [(a, e)], (s∗αω)(v) = ω(v, 0) = θα(v). So θα are the ’gauge fields’ of the Cartan connection. Let
Ω = dω + 1

2 [ω, ω] ∈ Ω2(p; g) denote the curvature of the Cartan connection. Then s∗αΩ = dθα + 1
2 [θα, θα].

Hence bundle automorphisms of P (covering the identity) are the gauge symmetries of the Cartan geometry.

Remark. ω parallelises P , just like ϑG parallelises G in the Klein model. Given X ∈ g we get a vector field
ξX ∈ X(P ) defined by ξX |p = ω−1

p (X), but unlike the case of (G,ϑG). this is not a Lie algebra morphism.
This is despite that for X ∈ h, Y ∈ g we do have [ξX , ξY ] = ξ[X,Y ]. The curvature ω is the obstruction to
X 7→ ξX defining a Lie algebra morphism g→ X(P ). To see this, calculate

ω(ξ[X,Y ] − ω([ξX , ξY ]) = [X,Y ] + (dω(ξX , ξY )− ξXω(ξY ) + ξY ω(ξX))

= [X,Y ] + (dΩ(ξX , ξY )− [ω(ξX), ω(ξY )]) + ξXY − ξYX
= [X,Y ] + Ω(ξX , ξY )− [X,Y ]

= Ω(ξX , ξY )

We can now give the standard definition of a Cartan geometry modelled on a Klein geometry:

Definition 9.18. A Cartan geometry (P, ω) on M modelled on G�H consists of the following:

1. a principal H-bundle P →M

2. ω ∈ Ω(P ; g) satisfying

(a) ∀p ∈ P ωp : TpP → g is a vector space isomorphism

(b) ∀h ∈ H, r∗hω = Ad(h−1)ω

(c) ∀X ∈ h, ω(ξX) = X

Definition 9.19. Let Ω = dω + 1
2 [ω, ω] ∈ Ω2(P ; g) be the curvature of ω. Then projection prg�h

◦ Ω ∈
Ω2(P ; g�h) is the torsion of ω. The Cartan geometry is torsion free if Ω ∈ Ω2(P ; h)

Lemma 9.20. Let (P, ω) be a Cartan geometry on M modelled on G�H. Let ψ : P → H be a smooth and
f : P → P be such that f(p) = rψ(p)(p). Then f∗ω = Ad(ψ−1)ω + ψ∗ϑH and f∗Ω = Ad(ψ) ◦ Ω.

Proof. The expression for f∗Ω follows from that of f∗ω. To calculate f∗ω, we work relative to a Cartan
gauge (U, θ) on U × H. Then f : U × H → U × H by f(a, h) = (a, hψ(a, h)) can be written as f =
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(id ◦pr1, µ ◦ (pr2 × ψ)). Hence if (v, y) ∈ TaU × ThH

f∗(v, y) = (v, µ∗(y, ψ∗(v, y))) ∈ TaU × Thψ(a,h)H

⇒ (f∗ω)(v, y) = ω(v, µ∗(y, ψ∗(v, y)))

= Ad(hψ(a, h))−1 ◦ θ(v) + ϑH(µ∗(y, ψ∗(v, y)))

= Ad(ψ−1) ◦Ad(h−1) ◦ θ(v) + (µ∗ϑH)(y, ψ∗(v, y))

= Ad(ψ−1) ◦Ad(h−1) ◦ θ(v) + Ad(ψ−1) ◦ ϑH(y) + ϑH(ψ∗(v, y))

= Ad(ψ−1) ◦
[
Ad(h−1) ◦ θ(v) + ϑH(y)

]
+ (ψ∗ϑH)(v, y)

=
[
Ad(ψ−1) ◦ ω + ψ∗ϑH

]
(v, y)

Corollary 9.21. Ω is horizontal, i.e. if either u, v are tangent to the fibre, Ω(u, v) = 0.

Proof. Let u, v ∈ TpP and v tangent to the fibre. Let ψ : P → H be any smooth map sending p 7→ e s.t.
(ψ∗)pv = −ωp(v) ∈ h. define f : P → P by f(q) = q · ψ(q). Then from the previous lemma we have that
p ∈ P

f∗ω = Ad(ψ−1)ω + ψ∗ϑH = ω + ψ∗ϑH

f∗Ω = Ω

Hence

ωp(f∗v) = ωp(v) + ϑH(ψ∗v) = ωp(v)− ωp(v) = 0

⇒ f∗v = 0

⇒ Ω(u, v) = Ω(f∗u, f∗v) = Ω(f∗u, 0) = 0

It follows that Ω defines a 2-form on TP�kerπ∗
∼= π∗TM .

Note that each fibre F of P is identified with H up to left multiplication by some element of H. Since ϑH is
left-invariant, it defines a ”Maurer-Cartan” form ϑF on the fibre. The fact that ∀X ∈ h, ϑF (ξX) = X shows
that ϑF = ω|F . It then follows that Ω vanishes when restricted to any fibre. As such we can interpret a Cartan
geometry (P, ω) as deforming (G,ϑG) in a way that fibrewise we still have (H,ϑH).

The tangent bundle of G�H is a vector bundle associated to G → G�H via the linear isotropy representation

Adg�h
: H → GL(g�h s.t. T (G�H) ∼= G ×h g�h. In a similar way, the tangent bundle of a Cartan geometry

(P, ω) modelled on G�H is isomorphic to an associated vector bundle P ×H g�h.

Proposition 9.22. Let (P, ω) be a Cartan geometry on M modelled on G�H. There is a canonical bundle

isomorphism ϕ : TM
∼=→ P ×H g�h such that ∀p ∈ π−1(x), ∃ϕp : TxM → g�h a H-equivariant vector space

isomorphism s.t. ∀h ∈ H, ϕp·h = Ad(h−1) ◦ ϕp

Proof. Consider the diagram

0 Tp(Fx) TpP TxM 0

0 h g g�h 0

ϑH∼=

(π∗)p

ω∼= ∃!ϕp∼=
ρ
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If v ∈ TxM , we may write v = (π∗)p(u) = (π∗)ph((rh)∗u) for some u ∈ TpP . Thus

ϕph(v) = ϕph((π∗)ph((rh)∗u))

= ρ(ωph((rh)∗u))

= ρ(Ad(h)−1 ◦ ωp(u))

= Ad(h)−1(ϕp((π∗)pu))

= Ad(h)−1ϕp(v)

This allows us to define a bundle map

q : P × g→ TM

(p,X) 7→ (π(p), ϕ−1
p (ρ(X)))

Then

q(ph,Ad(h)−1X) = (π(ph), ϕ−1
ph (ρ(Ad(h)−1X)))

= (π(p), (Ad(H)ϕph)−1ρ(X))

= (π(p), ϕ−1
p (ρ(X)))

= q(p,X)

Hence q induces q̄ : P ×H g�h→ TM , which covers the identity and is a linear iso on the fibres.

Corollary 9.23. Let (P, ω) be a Cartan geometry on M modelled on G�H. Then vector fields ξ ∈ X(M)
are in bijective correspondence with functions ξ̄ : P → g�h such that ∀p ∈ P, h ∈ H, ξ̄(ph) = Ad(h−1)◦ ξ̄(p)
by

ξ 7→ ξ̄ =
{
p ∈ P : 7→ ϕp(ξπ(p)) ∈ g�h

}

Definition 9.24. The curvature function K : P → Hom(Λ2g�h, g) of a Cartan connection ω is defined

by

∀p ∈ P, ∀X,Y ∈ g, K(p)(X,Y ) ≡ Ωp(ω
−1
p (X), ω−1

p (Y ))

Lemma 9.25. The curvature function is well defined and is H-equivariant, i.e.

∀h ∈ H, K(ph)(X,Y ) = Ad(h−1)K(p)(Ad(h)X,Ad(h)Y )

Proof. Fix p ∈ P and let X̃ = X + W, Ỹ = Y + Z for some W,Z ∈ h. Then Ωp(ω
−1
p (X̃), ω−1

p (Ỹ )) =
Ωp(ω

−1
p (X), ω−1

p (Y )) since ω−1
p (Z), ω−1

p (W ) are tangent to the fibres and Ω is horizontal. Therefore K(p) ∈
Hom(Λ2g�h, g). The equivariance follows from the equivariance of ω,Ω.

It follows that the curvature of a Cartan connection defines a curvature section of the bundle
P ×H Hom(Λ2g�h, g).

Proposition 9.26. A Cartan connection is torsion free iff the curvature function takes values in

Hom
(

Λ2g�h, h
)
⊂ Hom

(
Λ2g�h, g

)
.

Exercise 9.27. Show that K(p)(X,Y ) = [X,Y ]− ωp(
[
ω−1
p X,ω−1

p Y
]
)
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Lemma 9.28 (Bianchi identity). dΩ = [Ω, ω]

Proof. Follows Mutatis Mutandis as for Ehresmann connections.

Let V be a vector space and f : P → V a function. A Cartan connection ω ∈ Ω1(P ; g) defines a universal
covariant derivative as follows: if X ∈ g and if ξX = ω−1(X), then D̃Xf ≡ ξXf . Since this is linear in X ∈ g,
we get

D̃ : Ω0(P ;V )→ Ω0(P ;V ⊗ g∗)

f 7→ D̃f

where we define D̃f by (iX)∗D̃f = D̃Xf for

iX : V ⊗ g∗ → V

v ⊗ η 7→ η(X)v

Definition 9.29. Let ρ : H → GL(V ) be a representation. We define

Ωk(P ; ρ) ≡
{
α ∈ Ωk(P ;V ) | ∀h ∈ H, r∗hα = ρ(h−1) ◦ α

}
the k-forms on P transforming according to ρ.

Proposition 9.30. D̃ : Ω0(P ; ρ)→ Ω1(P ; ρ) ∼= Ω0(P ; ρ⊗Ad∗)

Proof. Let p ∈ P, X ∈ g, f ∈ Ω0(P ; g). Then

(iX)∗(r
∗
h(D̃f))(p) = (iX)∗(D̃f(ph))

= (D̃Xf)(ph)

= ω−1
ph (X)f

Now r∗hω = Ad(h−1) ◦ ω ⇒ ωph ◦ (rh)∗ = Ad(h−1) ◦ ωp ⇒ (rh−1)∗ ◦ ω−1
ph = ω−1

p ◦Ad(h) so

(iX)∗(r
∗
h(D̃f))(p) =

[
(rh)∗ω

−1
p (Ad(h)X)

]
f

If Y ∈ X(P ) we have

((rh)∗Y )f = Y (r∗hf) = Y (ρ(h−1) · f) = ρ(h−1)Y f

so taking Y = ω−1
p (Ad(h)X) yields[

(rh)∗ω
−1
p (Ad(h)X)

]
f = ρ(h−1)ω−1

p (Ad(h)X)f = ρ(h−1)D̃Ad(h)Xf

and so

(iX)∗(r
∗
hD̃f)(p) = ρ(h−1)D̃Ad(h)Xf

Even if (V, ρ) is irreducible, (V ⊗ g∗, ρ⊗ Ad∗) need not be. Decomposing V ⊗ g∗ into irreducibles decomposes
D̃ and in this way we get ’famous’ differential operators such as ∂, ∂̄,∇·,∇×.

Lemma 9.31. Let X ∈ h and f ∈ Ω0(P ; g). Then (iX)∗D̃f = −ρ∗(X)f where ρ∗ : h → End(V ) is the
LA hom induced by ρ : H → GL(V )
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Proof.

(iX)∗(D̃f)(p) = ω−1
p (X)f

=
d

dt
f(petX)

∣∣∣∣
t=0

=
d

dt
ρ(e−tX)f(p)

∣∣∣∣
t=0

= −ρ∗(X)f(p)

9.1 Reductive Cartan geometries

Now assume that (P, ω) is reductive, s.t. g = h⊕m with Ad(H)m ⊆ m. Then the Cartan connection decomposes
as ω = ωh+ωm, so does the Cartan gauge θ = θh+θm, and so does D̃ = D̃h+D̃m. If for X ∈ h, D̃Xf = −ρ(X)f ,

then D̃h = −ρ. As we will see below, D̃m defines a Kozul connection on any associated vector bundle P ×H V .
It follows from the defining properties of a Cartan connection that ωh ∈ Ω1(P ; h) is the connection one-form
for an Ehresmann connection on the principal H-bundle P → M . In contrast, the component ωm ∈ Ω1(P ;m)
satisfies

1. It is horizontal, i.e. ∀X ∈ h, ωm(ξX) = 0

2. r∗hωm = Ad(h−1) ◦ ωm

The above two mean that ωm induces a one-form on M with values in the associated vector bundle P ×H m,
which is isomorphic to TM . Thus ωm is a soldering form on P .
As ω splits, so does Ω = Ωh + Ωm where the structure equation Ω = dω + 1

2 [ω, ω] gives

Ωh = dωh +
1

2
[ωh, ωh] +

1

2
[ωm, ωm]h

Ωm = dωm + [ωh, ωm] +
1

2
[ωm, ωm]m

Therefore, the h-component of the curvature of the Cartan connection is not necessarily the curvature of
the Ehresmann connection, but receives a correction from the soldering form:

ΩCartan
h = ΩEhresmann +

1

2
[ωm, ωm]h

whereas the torsion of the Cartan connection is not necessarily the torsion of the affine connection defined by
ωh:

ΘCartan = ΩCartan
m = Θ +

1

2
[ωm, ωm]m

Let’s now consider the universal covariant derivative D̃ = D̃h+D̃m. The m-component defines a Kozul connection
on any associated vector bundle E ≡ P ×H V for (V, ρ) a representation of H. Indeed, let ψ : Γ(E)→ Ω0(P ; ρ)
be the C∞(M)-modules isomorphism. We define ∇ζ : Γ(E) → Γ(E) by the commutativity of the following
square:

Γ(E) Γ(E)

Ω0(P ; ρ) Ω0(p; ρ)

∇ζ

ψ ∼= ∼= ψ

ζ̃

i.e. ψ(∇ζs) = ζ̃ψ(s), where ζ̃ is the horizontal lift of ζ, i.e the unique1 vector field on P s.t. (π∗)pζ̃ = ζπ(p)

and ωh(ζ̃) = 0

Proposition 9.32. ∇ defines a Kozul connection on E

1Is it clear why this vector field is unique
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Proof. ∇ζ is R-linear and if f ∈ C∞(M), (π∗f)ζ̃ is the horizontal lift of fζ, so we have ∇fζs = f∇ζs.
Finally, to get that ∇ is a derivation, see

ψ(∇ζ(fs)) = ζ̃ψ(fs) = ζ̃(π∗fψ(s)) = ζ̃(π∗f)ψ(s) + (π∗f)ζ̃ψ(s)

= π∗(ζf)ψ(s) + (π∗f)ψ(∇ζs) = ψ((ζf)s) + ψ(f∇ζs)
= ψ((ζf)s+ f∇ζs)

Proposition 9.33. Let (U, θ) be a gauge for a reductive Cartan geometry, σ : U → P |U the section such
that θ = σ∗ω, ζ ∈ X(U), and φ = σ∗Φ where Φ ∈ Ω0(P ; ρ). Then

∇ζφ ≡ ζ(φ)− ρ∗(θh(ζ))φ

is the expression of the covariant derivative of Φ in the gauge (U, θ).

9.2 Special geometries

We may define ’special geometries’ via curvature constraints

Lemma 9.34. Let V ⊂ g be the vector subspace spanned by the values of the curvature form Ω. Then V
is a H-submodule

Proof. Let v = Ωp(ξp, ηp). Then

Ad(h−1)v = Ad(h−1)(Ωp(ξp, ηp))

= (r∗hΩp)(ξp, ηp)

= Ωph((rh)∗ξp, (rh)∗ηp)

which is a value of Ω

In particular if V ⊂ h is s.t. the Cartan geometry is torsion-free, then V is is an ideal. If the geometry is
torsion-free and the action of H on h is irreducible, there are no special geometries arising from g-curvature

conditions. However, the H-modules Hom
(

Λ2
(
g�h
)
, h
)

need not be irreducible and we can define special ge-

ometries by damnding that the curvature function K : P → Hom
(

Λ2
(
g�h
)
, h
)

takes values in a H-submodule.

If H is compact, then Hom
(

Λ2
(
g�h
)
, h
)

is fully reducible

Example 9.35. g = son nRn and h = son. Have Hom
(

Λ2
(
g�h
)
, h
)

= Hom(Λ2Rn, son).

The subspace corresponding to those curvature functions obeying the (algebraic) Bianchi identity breaks up
into three submodules: scalar, trace-free Ricci, and Weyl.

Cartan connections are special types of Ehresmann connections. Let P → M , G → G�H, be principal H-
bundles. There is an associated fibre bundle Q = P ×H G where H acts on G by left multiplication. This is a
(right) principal G-bundle and M , and we have a natural inclusion P ⊂ Q sending p 7→ (p, e). An Ehresmann
connection on Q is a g-valued one-form and its restriction to P gives a candidate for a Cartan connection on P .

Theorem 9.36. Let G�H be a Klein geometry and let P,Q be principal H,G-bundles respectively over a
manifold M . Assume that dimP = dimG and ϕ : P → Q is a H-bundle map. Then there is a bijection of
sets

{Ehresmann connections on Q, kernels not ϕ∗(TP )} ϕ
∗

→ {Cartan connections on P}

Proof. Let $ ∈ Ω1(Q; g) be an Ehresmann connection s.t. $∗(TP )∩ker$ = 0. It follows that ω = ϕ∗$ ∈
Ω1(p; g) with zero kernel. Since dimP = dim g, ωp : TpP → g is injective and so an isomorphism.
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Since ϕ : P → Q is a H-bundle map, ∀X ∈ h the vector fields ξX on P and ζX on Q are ϕ-related : i.e

∀p ∈ P, (ϕ∗)pξX(p) = ζX(ϕ(p))

Also,

r∗hω = r∗hϕ
∗$ = ϕ∗r∗h$ = ϕ∗(Ad(h−1) ◦$) = Ad(h−1) ◦ ϕ∗$ = Ad(h−1) ◦ ω

so ω is a Cartan connection. Next we define a correspondence

{Cartan connections on P} j→ {Ehresmann connections on Q, kernels not ϕ∗(TP )}

Given a Cartan connection ω on P we extend it to a form $ = j(ω) on P ×G by

$(p,g) = Ad(g−1) ◦ π∗Pωp + π∗GϑG|g

where πP/G : P ×G→ P/G are the canonical projections. We notice that ∀X ∈ g, $(0, XL) = X. Also,
if i : P → P ×G is the injection p 7→ (p, e) then i∗$ = ω. In particular, $ does not vanish on T (P ×{e}).
Let γ ∈ G and consider id×Rγ : P ×G→ P ×G:

(id×Rγ)∗$(p,gγ) = $(p,gγ) ◦ (id×Rγ)∗

=
(
Ad(gγ)−1 ◦ π∗Pωp + π∗GϑG

)
◦ (id×Rγ)∗

= Ad(gγ)−1 ◦ ω ◦ (πP )∗ ◦ (id×Rγ)∗ + ϑG ◦ (πG)∗ ◦ (id×Rγ)∗

= Ad(gγ)−1 ◦ ω ◦ (πP )∗ + ϑG ◦ (Rγ)∗ ◦ (πG)∗

= Ad(γ)−1
(
Ad(g)−1 ◦ π∗Pω + π∗GϑG

)
= Ad(γ)−1 ◦$(p,g)

We now check that $ is basic for P ×G→ P ×H G which means that it is both horizontal and ’invariant’.
The latter condition requires that for αh : P × G → P × G, (p, g) 7→ (phh−1g), we have α∗h$ = $. We
calculate

(α∗h$)(p,g) = $(ph,h−1g) ◦ (αh)∗

= Ad(h−1g)−1π∗Pω ◦ (αh)∗ + π∗GϑG ◦ (αh)∗

= Ad(h−1g)−1ω ◦ (πP )∗ ◦ (αh)∗ + +ϑG ◦ (πG)∗ ◦ (αh)∗

= Ad(g−1) ◦Ad(h) ◦ ω ◦ (Rh)∗ ◦ (πP )∗ + ϑG ◦ (Lh−1)∗ ◦ (πG)∗

= Ad(g−1) ◦ π∗Pω + π∗GϑG (as R∗hω = Ad(h)−1ω and ϑG is LI)

= $(p,g)

To show $ is horizontal, let X ∈ h and ξX ∈ X(P ×G) corresponding to the right H-action on P ×G:

P ×G×H → P ×G
(p, g, h) 7→ (ph, h−1g) = ((µP × µG) ◦ (id× id×ı× id) ◦ (id×∆× id) ◦ %)) (p, g, h)
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where we have

% : P ×G×H → P ×H ×G
(p, g, h) 7→ (p, h, g)

id×∆× id : P ×G×H → P ×H ×H ×G
(p, h, g) 7→ (p, h, h, g)

id× id×ı× id : P ×H ×H ×G→ P ×H ×H ×G
(p, h, h, g) 7→ (p, h, h−1, g)

µP × µG : P ×H ×H ×G→ P ×G
(p, h, h−1, g) 7→ (ph, h−1g)

Then

(ξX)(p,g) = ((µP × µG) ◦ (id× id×ı× id) ◦ (id×∆× id) ◦ %))∗,(p,g,e) (0, 0, X)

= (µP × µG)∗ ◦ (id× id×ı× id)∗ ◦ (id×∆× id)∗,(p,e,g)(0, X, 0)

= (µP × µG)∗ ◦ (id× id×ı× id)∗,(p,e,e,g)(0, X,X, 0)

= (µP × µG)∗,(p,e,e,g)(0, X,−X, 0)

= (µP )∗,(p,e)(0, X), (µG)∗,(e,g)(−X, 0)

= (ω−1
p (X),−(ϑG)−1

g (Ad(g−1)X))

⇒ $(p,g)(ξX) = $(p,g)(ω
−1
p (X),−(ϑG)−1

g (Ad(g−1)X))

= (Ad(g−1) · (π∗P ◦ ω) + π∗GϑG)(ω−1
p (X),−(ϑG)−1

g (Ad(g−1)X))

= Ad(g−1)X = Ad(g−1)X = 0

Therefore $ descends to $ ∈ Ω1(P×HG, g) and satisfies the properties of an Ehresmann connection which
in addition obeys ker$ ∩ ϕ∗(TP ) = 0.
Finally, we need to show that ϕ∗ and j are mutual inverses:

ϕ∗(j(ωp)) = ϕ∗$(p,e) = Ad(e)−1 ◦ ϕ∗π∗Pωp + ϕ∗π∗GϑGe

= (πP ◦ ϕ)∗ωp + 0 (since πG ◦ ϕ is constant) = ωp

shows that ϕ∗ ◦ j = id. To do the other direction, it suffices to show ϕ∗ is injective. Now if ϕ∗$ = ϕ∗$2

then $1, $2 agree on the image ϕ∗(TP ) and hence on all the right translations. But $1, $2 agree on ξX
and these two kinds of vectors span TQ
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