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1 Introduction

These are typset notes based on a small graduate lecture course given by Professor José Figueroa-O’Farrill at
the University of Edinburgh in Autumn 2019.

2 Fibre bundles

Definition 2.1 (Fibre Bundle). A fibre bundle consists of a smooth surjection w : E — M between
manifolds E (the total space) and M (the base space) and such thatVa € M there exists a neighbourhood
U > a and a diffeomorphism ¢ : =1 — U x F (a local trivialisation) for some manifold F (the typical
fibre) such that the following triangle commutes

W U) 25 UxF

l/

We often write F — E 5 M. If we can take U = M we say that E is a trivial bundle. Now suppose that
(U, @), (V,1) are local trivialisations with U NV # ). Then we have two ways to view 7~ 1(UNV) as a product.

(UNV)xF =7 (UNV) —£= (UNV) x
Uunv



and hence
Yol (UNV)xF = (UNV)xF
(a;p) = (a,®(a,p))

where ®(a,-) : F — F is a diffeomorphism, and hence it defines a transition function g: UNV — Dif f(F).

Definition 2.2. Let F — E 5 M. A collection {(Us, pa)} of local trivialisations where M = UaU, is
called a trivialising atlas for E = M.

Let us introduce the notation U,g = U, N Ug, etc. and g, the transition function defined by ¢, o gpgl.

Fact 2.3. The transition functions satisfy the cocycle conditions
e Va € Uy, gaul(a) =idp
e Va c UaBa gaﬁ(a)gﬁa(a) =idp

e Va S Uaﬁva ga,@(a)gﬁ’}’(a’) = ga'y(a)-

’
s

Definition 2.4. Let E 5 M, E' &5 N be fibre bundles. A bundle map is a pair (®,4) of smooth maps
®:FE— FE, ¢: M — N such that the following commutes

E-%*.F

7{ l”'

M—25 N

Since m is surjective, ¢ is uniquely determined by ®, which is said to cover ¢. Notice that ® is fibre
preserving.

Definition 2.5. Let f : M — N be smooth and E =5 N a fibre bundle. Then we can define the pullback
bundle f*E — M as the categorical pullback, i.e.

ffE={(a,e) € M X E|ng(e) = f(a)}

Restricting the canonical projections from M x E we get maps 7w : f*E — M, ® : f*E — E making the
following commute

f*E—*+ E

a le

ML
Taking a € M, and (V,%) a local trivialisation for E — N with f(a) € V, then (f~1(V),p) with ¢ :
7 Y fHV)) = f7YV) x F defined by ¢(b,e) = (b,pr2(¢(e)) is a local trivialisation for f*E — M. This
shows that f*E — M is a fibre bundle, and it has fibres (f*E), = Ef(q).-

Definition 2.6. A section of a fibre bundle F — E 5 M is a smooth map s : M — E such that
mos=1idy;.

Sections may not exist, but if the fibre bundle is trivial, then any smooth map o : M — F defines a sections
by s(a) = (a,0(a)). Since fibres are locally trivial, they admit local sections s,, : U, — 7~ *(U,) via local smooth
maps o, : U, = F. A section s : N — E can be pulled back via f : M — N to give a section f*s: M — f*FE

via (f*s)(a) = (a, s(f(a)))-

Definition 2.7. Consider F — E = M. Then the fibres E, = 7~ (a) C E are submanifolds of E. The
tangent space at e € E, is ¥, = ker((my)e : TeE — T.M) and is called the vertical subspace of T.E



In the absence of any additional structure, there is no preferred complementary subspace of T, E.

Definition 2.8. A connection on E — M is a smooth choice of complementary subspace 7, C T, E i.e.
T.E =09, & .. That is, a connection is a distribution 7 C TE

Note (W*)e‘ﬂ 2 I, =Y TreyM, so H gives a choice of how to lift tangent vectors, and so curves, from M
to E.
Given a distribution one can ask whether it is integrable (in the sense of Frobenius), i.e. is E foliated by
submanifolds whose tangent spaces are 7. We shall see that the obstruction to the integrability of J# can be
interpreted as the ’curvature’ of the connection.

3 Principal fibre bundles

We now specialise to principal fibre bundles, so called because the typical fibre is a principally homogeneous
space for a lie group.

Definition 3.1. A Lie group consists of a manifold G which is also a group such that group multiplication
G x G — G, (g,h) ~ gh, and group inversion G — G, g+~ g1, are smooth maps

For g € G a Lie group, we define diffeomorphisms L, : G — G, Ly(h) = gh, and R, : G — G, R4(h) = hg,
call left & right multiplication.

Definition 3.2. Recall that given a diffeomorphism F : M — N we define the pushforward F, : X(M) —
X(N) by, for § € X(M), f € C(N), (F&(f) =&(fo F).

Remark. Note that given any smooth map of manifolds F : M — N, the derivative dF : TM — TN gives
a map Va € M, dFy : T,M — Tp)N which for £ € T, M, f € C®(N) acts as (dF,(§))(f) = &(f o F).
This is often written as Fy, but the two concepts are subtly different.

Definition 3.3. A vector field £ € X(G) is left invariant if Vg € G, (Lg)«& = §. Similarly we define
right invariant.

Lemma 3.4. If ¢ is a LIVF, §; = (Lg)+«&c, where e € G is the identity.

Proof. Let f € C*°(G). Then

(Lg)«E =& = &(f o Ly) =&(f)
Now evaluating at g € G, §; € T,G 50 4(f o Lg) = ((Lg)+&e)(f). Result follows. O

It can be shown that the lie bracket of two left invariant vector fields is also left invariant.

Definition 3.5. The vector space of left invariant vector fields is the Lie algebra g of G.

Since a LIVF is uniquely determined by its value at the identity, we have that g =2 T.G as a vector space, but
we can also transport the Lie bracket from g to T.G so they are isomorphic as algebras.

Definition 3.6. The maps (Lg-1). : T,G — T.G = g define a g-valued one form 0 called the left
invariant Maurer-Cartan one-form. If £ is a LIVF, 0(&) = &..

By definition, @ is left invariant.



Theorem 3.7. The MC one form satisfies the structure equation

1
2

9 = —= [0, 0]

i-e. for &;m € X(G), dO(&,n) = —[0(€),0(n)]

Proof. We will need the following result:

Claim: For § € QY(M), X,Y € X(M)

di(X,Y) =X (6(Y)) - Y(6(X)) — 0([X,Y])
To show this take coordinates such that 0 = 0,dz®, X = X%0,,Y = Y®0,. Then

dO(X,Y) = (0p0, XY ) (dx® A dz®)(D,, D)
= 00, (XPY? — XY?)
= X%0,(0,Y?) — Yb0,(0,X%) — 0,(Xt0Y* — YPO,X)
= X(0(Y)) - Y(6(X)) - 0([X, Y])
Now if X,Y are LIVFs, 6(X),0(Y) are constant, so on these
do(X,Y)+6([X,Y]) =0

Moreover for LIVFs 6([X,Y]) = [#(X),6(Y)]. Now LIVFs span the space of vector fields, and all the
operations are linear, so we are done. O

Proposition 3.8. If G is a matriz Lie group, 0, = g~ 'dg.

Proof. In a matrix group, we have the correspondence X € g < exp(tX) € G. Take a basis {T,} of T.G
and give g € G coordinates x? if g = exp(}_, 2%T5). Then let g be constant and take a curve through g,
v:R = G, y(t) = exp[Y_,(a* + t£*)T,] with tangent vector g (>°,£T,) € TyG. Under L,-1, this is a
curve through e with tangent vector (), £Tq) € T.G. Hence if we write £ = ) £¢ aga for the the vector
generating v we get

by = ZTadx“ =g ldg

O

Every g € G defines a diffeomorphism LyR,-1 : G — G, h ghg™'. Since e = geg™! its derivative belongs
to GL(T.G) = GL(g).

Definition 3.9. The adjoint representation of G on g is given by Ad, = (Lg)*(Rg_l)*

Lemma 3.10. R;H =Ad,—1 0

Proof.

R0ng = Ong(Ry)«
= (Lng)-1)x(Ryg)«
= (Lgfl)*(thl)*(Rg)*
= (Lg-1)+(Rg)«(Ln-1)«
= Ady-1 0,




Definition 3.11. The left action of a Lie group G on a manifold M is a smooth map G x M — M,
(g9,a) — ga satisfying the azioms Vg, h € G, Va € M

e g(ha) = (gh)a

Right action is defined equivalently.

Left and right actions are equivalent if we take ga = ag™!.

Definition 3.12. An action is transitive if the G-orbit of any point is M, equivalently Ya,binM, g €
G, b=ga

Definition 3.13. An action is free if the only element which fizes any point is the identity.

Definition 3.14. A G-torsor (or principally homogeneous G-space) is a manifold M on which G acts
freely and transitively

Given a G-torsor M, any point in M defines a diffeomorphism g & M, and as such G-torsors are said to be like
a Lie group where we have ’forgotten’ the identity.

Definition 3.15. A principal G-bundle is a fibre bundle P = M together with a smooth rights G-action
(p, g) = 14(p) which preserves fibres (mory =7) and acts freely and transitively.

It follows that fibres are G-orbits and hence M = £, /G- The condition of local triviality now says that the

local trivialisation 7=1(U) % U x G are G-equivariant, i.e. where ¢(p) = (7(p),7(p)), v : 7= (U) = G a
G-equivariant (yory = R, o+y) fibrewise diffeomorphism

Definition 3.16. A principal G-bundle is trivial is 3 a G-equivariant diffeomorphism P A MxG.

Proposition 3.17. A principal G-bundle P = M admits a section iff it is trivial

Proof. If P 5 M is trivial, 1 : P — M x G defines a section s : M — P by s(a) = 1~ (a,e).
Conversely, is s is a section, define ¢ by ¥(p) = (7(p), x(p)) where x(p) is uniquely defined by p =
s(m(p))x(p). Notice that since pg = s(m(p))x(p)g = s(w(pg))x(p)g so x(prg) = x(p)y- O

Example 3.18. Let G be a Lie group and H < G a closed subgroup. Then G = G/H is a principal
H-bundle. Therefore homogeneous spaces are examples of principal bundles.

Since principal fibre bundles are locally trivial, they admit local sections. Let {(Ua, o)} be a trivialising
atlas for G — P 5 M. The canonical local sections s, : U, — 7 1(U,) are given by s,(a) = ¢;'(a,e). On
Uap we have sections s, sg. Writing ¢ (p) = (7(p), ga(p)) for go : Uy — G equivariant we have that for
p € (Uyp).

(7(p), 9a(P)) = Pa(p) = (va © 05" 0 0p)(p) = (Pa © 5" ) (7 (p), 95(p))
= (7(p), 9o ()95 (P) 98(P)) = (va 0 5" )(x(p), 95(p))

Gop (P)

=dgaplP

Note that §as(pg) = ga(pg)gﬁ_l(pg) = 9a(p)997 1 95(P) = Gap(p) and so is constant along the fibres. Hence
390 : Uap = G 8.b. Gap = T gap and (pq 0 @gl)(a,g) = (a, gap(a)g). It follows that the go3 obey the cocycle



conditions.
Now note gq 0 So : Uy — G is a constant map taking value e, and so letting p = sg(a)

9a(P) = 9ap(P)95(P) = ga(s5(a)) = gap(a)(gs 0 55)(a)
= (9a © 8a)(a)gas(a)
= 9a(sa(a)gas(a))
= sg(a) = sq(a)gap(a) as g, a diffeomorphism

4 Ehresmann Connections

Let P 5 M be a principal G-bundle. Taking p € P, the derivative (m.), : T,P — TrpyM is a surjective
map.

Definition 4.1. The kernel V,, is called the vertical subspace. A vector field & € X(P) is called vertical
if Vp € P, & € V.

Lemma 4.2. The Lie bracket of two vertical vector fields is vertical

Lemma 4.3. The vertical subspaces span a G-invariant integrable distribution

Proof. Note mory = m = T (rg)x = T = (Th)«Vp = Vpy so G-invariant. Integrable by the previous
lemma. O

Definition 4.4. An Ehresmann connection on P is a smooth choice of horizontal subspaces H, C
T,P st. T,P =V, & H, and (ry).H, = Hp,. Equivalently an Ehresmann connection is a G-invariant
distribution H C TP complementary to V.

Example 4.5. A G-invariant Riemannian metric on P defines an Ehresmann connection by H, = VpJ-.

The G action on P defines a smooth map g — X(P) assigning to every X € g the fundamental vector
field £x defined at p € P by

(€)= 5 00 )|
Lemma 4.6. &x is vertical
Proof.
O

As the G action is free, Vp € P the map X — (£x), is an isomorphism g = Vp.

Lemma 4.7. (rg):{x = €ad,_,(x)




Proof.

(rg)«(€x)p

Definition 4.8. The connection one form of a connection H C TP is the g-valued one form w €
QOY(P;g) defined by

Proposition 4.9. The connection one form obeys ryw = Adgy-1 ow

Proof. Let & be horizontal. Then (r).¢ is also horizontal as H G-invariant. Then (r;w)(§) = w((ry).£) = 0.
Note in this case (Ad,-1 ow)(§) = 0 too.

Now if £ = £x, (Adg-1 0w)(§) = Adg-1(X) = w(aq,_, (x)) = w((rg)«€x) = (rgw)(€) L

It turn out we also have a converse:

Proposition 4.10. If w € QY(P;g) satisfies row = Adg-10w and w(éx) = X, then H = kerw is a
connection on P.

Now define the pullback of w along local sections to be A, = stw € Q1 (U,; g).

Proposition 4.11. Let w, = Adg;1 orm*Au + gi0 where 0 is the LI Maurer-Cartan one form on G. Then
Wa = w|7\'_1Uu

Proof. The proof will have two steps:

| Claim: w and w, agree on the image of s,
Since m o 5o = id|y , TpP = Im(sq o M)« ® V,, for p = su(a). Hence V€ € TP, 3£ € V, sit.
§ = (sa)«7=& + &£ Then using go(p) = (ga © 5a)(a) =€
wa(§) = (T"s5w)(€) + (9a0e)(€) (at p, Ad 1 =id)

w(($a)smx&) + Oe((ga)«E)
= W((8a)+mxE) 4 0c((9a)+E") a5 (ga)x(sa)s = (ga © 5a)x =0

w((

w(

Sa)«Tx) +w(E”)

Claim: w and w,, transform in the same way under the right G action.

75 (Wa)pg = Adg, (pg)-1 0T, T s5w + 1,950
= Ad(g, (p)g)-1 OTy T Spw + ga Ry0
= Adg—l ( )71 O7T saw =+ ga(Adgfl 00)
= Ady-1 (Ady, ()
= Ady-1 o(wa)p

—1omstw + ghb)

Hence we are done. O

Now as w is a global one form, w, and wg must agree on U,g, allowing us to relate A, and Ag, namely on
Uap

Ay = Shtwa = Shwp = 55 (Adgﬁ(sa)q om*Ag + ggﬂ)
= Adg,, oAz + ggoﬂ



Example 4.12. For matriz Lie groups, g5,0 = gpa-1dgas = —dga/;go_tﬁl, 50

Ao = gapApYng — 490893

Similarly, one can ask how {A,} depends on the choice of local section.

Fact 4.13. If s, is another local section for U,, Jhy : Uy — G s.t. s,(a) = sq(a)hq(a) and then

Al = Ad,_1 0Aq + B30

Idea. We now have three different ways to understand connections on a principal G-bundle P = M,
namely;

1. a G-invariant horizontal distribution H C TP

2. a one form w € Q' (P;g) satisfying w(éx) = X and rjw = Adg-1 ow

3. a family of one forms {A,l € QY (Uy; g} satisfying Aq = Adg,, 0Ag + 95,0 on Uap # 0

If P 5 M is a principal G-bundle, G-equivariant bundle diffeomorphisms are called gauge transformations
and one can ask how an Ehresmann connection transforms. Let H C T'P be a G-invariant horizontal distribution.
Then let H® = ®, H be the gauge-transformed distribution.

Lemma 4.14. H® ¢ TP is an Ehresmann connection

Proof.

(Tg)*HfII;(p) = (rg)x @ikl = @u(rg) .y = o Hpy = H(q‘)b(pg) = Hfil:(p)g

and H?® is complementary to V because o, T, P =Y Ty P and @, preserves V = ker 7, because mo & =
s U

Exercise 4.15. Let ® be a gauge transformation in a principal G-bundle P = M. Let éx denote a
fundamental vector fields for the G-action on P. Show that £x is gauge invariant, i.e. P.éx = Ex.
Further, show that if w is the connection one form for an Ehresmann connection H then (®~1)*w is the
connection one form for H®.

Let {A,}, {A%} be the gauge fields corresponding to the Ehresmann connections H, H®. Since ® preserves
fibres it makes sense to restrict to 7~ 'U,. Applying the trivialisation o (®(p)) = (7(p), ga(®(p))) which defines
a1 7 Ua = G by Ga(p) = ga(2(p))ga(p) "

Lemma 4.16. ¢, is constant on the fibres

Proof.




Hence ¢, defines a smooth map ¢, : Uy — G. On overlaps U, # ¢ we have that Va € Uap, p € 7 '(a), hence

$a(a) = ga(®(p))galp) ™"
= 9a(®(p)) - 95(®(p)) ' 95(2(p)) 98(P) ' 95(p) g (p) "

€ €

= gap(a)d3(a)gap(a) " since w(p) = 7(®(p)) = a

Remark. We will see later that {¢,} defines a section of a fibre bundle Ad P on M associated to the
principal bundle P.

Exercise 4.17. Show that on U,, A2 = Ady, o(Aa — ¢10) = dpaAadyt — dpadyt, which is a gauge

transform

5 Kozul Connections

Definition 5.1. A real, rank k, vector bundle E = M is a fibre bundle whose fibres are k-dimensional
real vector spaces and whose local tirivialisations 1 : 7='U — U x R¥ restrict fibrewise to isomorphisms
¥ By — {a} x R* of real vector spaces.

Let P 5 M be a principal G-bundle and let p : G — GL(V) be a Lie group homomorphism (i.e. a
representation of G), where V is a f.d. vector space. Since G acts freely on P, it also acts freely on P x V via
the right action

(p.v)g = (pg,p(g~")v)

We let E = P XV denote the quotient (P x V)/G via the above action. It is the total space of a vector bundle
E 3 M where

w:PxqgV > M
[(p,v)] = m(p)

Definition 5.2. E 3 M is called an associated vector bundle to the PFB P — M, associated via the
representation p.

Let {(Ua, ¢a)} be a trivialising atlas for P with transition function {gas : Usg — G} obeying the cocycle con-

ditions. We may then trivialise P xg V on each U,, and the transition functions are {p o gog : Uag — GL(V)}.

More concretely we define P x¢ V = UaUa XV where (a,v) ~ (a, p(gap(a))v)

Let P = M be a G-PFB and E = P xg V = M an associated VB with p : G — GL(V). Let T'(E) =

{s: M — E|wos=idy} denote the C°°(M )-module of sections of E, and CF (P, V) = {¢(: P =V |Vg € G, ri¢ = p(g) '
the G-equivariant functions P — V. We can give CZ (P, V) the structure of a C°(M)-module by declaring

that for f € C*°(M), f(=7"f(

Proposition 5.3. There is a C*°(M)-module isomorphism

I(E)=Cg(PV)

Proof. Let o € T'(E). Let ¢, : w 1U, — U, x V be a local trivialisation and define o, : Uy — V, (¥4 ©
o)(a) = (a,04(a)). On overlaps the local functions o, 0g, are related by o4 (a) = p(gap(a))os(a), where
Jap are the transition functions of P — M . We now define (, : 7 U, — V by (o ((7*54)(p)) = 0u(7(p))

and extend by (o ((7*s4)(p)g) = p(g) toa(m(p)).




Let 7(p) = a € Usp. Then

Cﬁ(p) = ((sa(a)ga(p)) = ¢

The {{a} are constructed to define a function ¢ : P — V such that 75¢ = p(g)~" o (. If f € C=(M), then
fo €T(E) and (fo)a = foa since 1), is fibrewise linear. Then by definition

p(ga(p)) ' o T*(foa) = p(ga(p)) ™' o (7" f)(7*0s)
= (7" )p(ga(p)) "' o (m*04)
(7 f)Ca(p)

so the map I'(E) — C& (P, V), thus defined, is C*°(M)-linear.
Conversely, given a G-equivariant ¢ : P — V| we define o € T'(E) as follows: let s, : U, — P be the
canonical local sections. Then let o, = s}¢. For a € Uyg,

a5(a) = ((s5(a)) = ¢(5a(a)gas(a)) = p(9as(a) ™' (sa(a)) = p(gpa(a))oa(a)

Example 5.4. Let w,w’ be connection one forms for Ehresmann connections 7€, 7' on P — M. Then
ryw = Adg-1 ow and similarly for w'. Now if £ is vertical, w(§) = w'(§), and hence T =w —w' € OL(P;g)
is horizontal (i.e. T7(§) =0 if & vertical).

Now let 7o = s3,7 € Q' (Ua; 9). Then 7o = shw — shw’ = Ag — Al,. On Usp, Ao = Ady,; 0As +g5,0, and
likewise for AL, = 1, = Ad,,, ots. Hence {74} defines T € Q' (M;ad P) where ad P = P X g.

JaB

Example 5.5. Take H < G closed and M = G/H. Then G 5 M is a principal H-bundle. Let p :
H — GL(V) be a representation. Then E = G xyg V. — M is a homogeneous vector bundle. Then
D(E) = {f:G—V|f(ph)=p(h) f(p)} as C>(M)-modules. On T'(E) we have a rep of G given by
(9-N)g1) =9(97" g1)

There is a sort of converse to the associated VB construction. If E = M is a real rank k vector bundle, we
may associate with it a principal GL(k,R)-bundle in one of two ways as follows:

1. Let {(Uy, %)} be a trivialising atlas for E, with 1, : 77U, — U, x R* and transition functions
9ap : Uap = GL(k,R). We can then glue U, x GL(k,R) and Ug x GL(k,R) along U,g by

(a, 4) ~ (a, gap(a)A)

which is equivariant under right multiplication by GL(k,R). The resulting principal GL(k,R)-bundle is
denoted GL(E) = M and it follows that E — M is the vector bundle associated to GL(E) view the
identity rep

2. The PFB GL(E) 3 M can understood as the bundle of frames of E ™ M. Let GL(E), = {ordered bases for E,}.
Let w = (uq,...,uy) be a frame for E,. Then w(u) = a defines w : GL(E) - M. If A € GL(k,R),
uA defined by (uA); = >, u;Aj; is another frame for E,. Given frames u,u for E,, 3 A € GL(k,R)
st. u = uA. Let (U,v) be a local trivialisation for E. We define a reference frame @(a) for each
a € U by ¥(u;(a)) = (a,e;), where {e;} is the standard bases for R¥. This defines a trivialisation
V:w U - U x GL(k,R) by ¥(u) = (a, A(u)) where u is a frame for E, and A(u) € GL(k,R) is the
unique element sending u to @(a). Now for B € GL(k,R), we have

(a)A(uB) = uB = (u(a)A(u))B = A(uB) = A(u)B

10



Hence VU is GL(k,R)-equivariant. Let {(Ua, ¥o)} denote the reslting trivialising atlas. Then if a € Uyg
and u is a frame for F,, then ¥, (u) = (a, Aq(u)) where @, (u)Aqy(u) = u. Now note

ug(a); = ¢~ ' (a,e)
=y oo 0yt (a,e;)
=15 (a, gap(a)e:)
=¥ (e, ) e(9ap(a));0)

J

= ¥ '(a,¢j)gas(a)ji

Definition 5.6. Let E = M be a vector bundle. A Kozul connection on E is an R-bilinear map

V:X(M)xT(E)—=T(E)
(X,s) = Vxs

satisfying that, Vf € C°(M),X € X(M),s € T'(E)
1. Vsz:fVXS
2. Vx(fs)=X(f)s+ fVxs

Suppose that E = P x¢ V for some G-PFB P 5 M Then an Ehresmann connection on P induces a Kozul

connection on E. For this it is convenient to use the C°°(M)-module isomorphism I'(E) =2 C& (P, V) and we
will define V on CZ (P, V):
Let 2# C TP be an Ehresmann connection. We define h : T,P — T,P to be the projector onto J# along
ker(m,). If we write { € T,P as £" 4 £ where ¢" € #;, and m,(£°) = 0, then h(§) = £". Let h* : TP — T; P
be the dual (i.e (h*a)(§) = a(h(£))). Let X € X(M). Then given p € P, let { € T,P be s.t. m.{ = X(a). We
define wa\p = (d)p(hE), i.e. dVip = h*dyp. This is well defined because if m.& = ., hé = h¢'. Further,
Vxi € CZ(P,V) because the split TP =V & J is G-invariant, and hence ry;h* = h*rj. Hence

ridVep = rihtdip
— h*ridy
= h*d(p(g)~" o 9)
=p(g) o h*dy = p(g)~'dVy

Proposition 5.7. V defines a Kozul connection on E
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Proof.

Vix = dip(h(f§))

= dy(h[(7" f)€])

= 7" fdip(h§)

= fVxy
Vx(fy) = Vx[(7* f)y]

= d[(7* f)Y] (hE)
(m*df)(h§) + (7" )V xy
T (df (meh&))Y + [V x9
o (df (m &) + fVxy
=1 (XY + fVxy
=X+ fVxy

O

We will now define a more calculationally useful formula for the Kozul connection of P x V induced by the
Ehresmann connection on P. Let ¢ € CZ(P,V) and let £ € X(P). We decompose £ = hé + &Y where m,£" = 0.
Then

dip(h€) = dp(§ = &§") = dy(§) — dyp (i)

The derivative £V only depends on the value of £V at a point, so we can take £V to be the fundamental vector
field &, (¢v) = uw(e) corresponding to the G-action. Therefore

d
£ = &y @1/) O Texp(tw(€))

=0
= & plexp(~1(6))) o v
= —pw(§)) ot
Therefore dip(h&) = dw(§) + p(w(§)) o 9, or abstracting &,
AV = dip + p(w) - ¢

Finally, we give a formula for V xo, where 0 € I'(P x¢ V'), now viewed as a family {0, : U, — V'} of functions
transforming in overlaps as 04 (A) = p(gap(a))os(a);

t=0

dVoo =dVsip=d¥(hos,) =d(xposy)oh
=d(sq¥) o h = sy(dip) o h

= sadVy = si(dy + p(w) 0 4)

dsa b + p(sqw) © sqt

=dos + p(Ay) 00y

Hence, if X € X(M),

Vx0a =X(04) + p(Aa(X)) - 04

Exercise 5.8. Show that V xo, transforms like o, on overlaps, that is

Vxoa= p(gaﬁ) © deg

Note this justifies the name covariant derivative.

In summary, given a G-PFB, P — M, and a f.d. rep p : G — GL(V), we construct a VB P xgV — M.
Every VB is obtained in this way from its frame bundle. We then introduced the notion of a Kozul connection
on a VB and showed that an Ehresmann connection on P induces a Kozul connection on P X V. The converse
is also true: a Kozul connection on E induces an Ehresmann connection on GL(E).

12



6 Curvature

Let P ™ M be a principal G-bundle and p : G — GL(V) a Lie group homomorphism. Let £ =P xgV 5 M
be the associated VB. We saw in the last lecture that we have a C°° (M )-module isomorphism

{s: M > E|lwos=idy}=T(E)2CFP,V)={(:P=V|ri¢=plg ") o(}

with module actions f - ¢ = (7* f)(.

We wish to generalise this from functions to forms. We define Q*(P, V) to be the k-forms on P with values in
V. If p € Pw € QF(P, V), then w, : A*¥T,P — V is linear. Let Q& (P, V) C Q¥(P,V) denote those V-valued
k-forms w which are both

e horizontal: V¢ vertical, tcw = 0
e invariant: Vg € G, rjw = p(g~") o w.

Forms w € QF(P,V) are said to be basic since they come from bundle valued forms on the base. Indeed, we
have

Proposition 6.1. There is an isomorphism of C*°(M)-modules
QE(P, V)= QF (M, P xg V)

where for w € QL (P, V), f-w= (7" f)w

Proof. Similar to k = 0 case. Define o € QF(M, P x¢ V) locally by {oq € 2*(Ua,V)} obeying o4(a) =
p(gap(a))og(a). Then (4 (p) = p(ga(p)) ' om*0, is clearly horizontal. It can be shown to be invariant and
that Vp € 77 1U,s, Ca(p) = (s(p). Conversely, if ¢ € Q% (P, V), we define o, = s%¢ and one can show that

Va € Uags, Uoz(a) = p(gaﬂ(a))gﬁ(a) O

If o e (P xgV),dVos = p(gas)d” os, and hence d¥o € QL (M, P xg V).

Lemma 6.2. Let a € Q% (P, V). Then h*da € Q5P V).

Proof. h*da is horizontal by construction, so we check invariance;

rohtda = h*rida = h*d(rya) = R*d(p(g) ' o) = p(g) ' o h*da

Definition 6.3. Let w € Q(P, g) be the connection one form of an Ehresmann connection 7 C TP. Its
curvature is ) = h*dw.

Lemma 6.4. Q € Q%(P,V).

Proof. Horizontal by construction, and by the same calculation as the lemma above it is invariant because
w is. O

Proposition 6.5. Q=0 iff 7 C TP is (Frobenius) integrable.

Proof. we see

Q(&,n) = dw(h§, hn) = h§ w(hn) —hnw(hE) —w([hE, hn])
=5 %
= w([hE, hn])

13



Hence
Q =0<VE, n [hE, hn] is horizontal

&, ) CH
& C TP is integrable.

Proposition 6.6 (Structure equation). Q = dw + 3 [w, w]

Proof. We need to show Q(&,7n) = dw(&,n) + [w(&),w(n)].
Let &, be horizontal. Then h§ = & and hnp =1, . hence Q(&,7n) = dw(§,n) and w(€) =0 = w(n).
Let n be horizontal and £ = £x be vertical. Then h€ = 0, hn = 1, and w(n). Hence we need

0=dw(éx,n) = —nw(x) —w([éx,m]) = *ﬁ*w([fx,ﬂ])
=0

i.e that [(x,.7¢] C . This is the case as J€ is invariant.
Let £ = £x,n = &y vertical. Then hfx = 0 = héy and w(€x),w(y) =Y. So we must show that

0= dw(éx,&y) + [w(éx),w ()]
=&xY — &y X —w([éx, &y]) + (X, Y]
= —w(§x,y)) + [X,Y]

so done. O

Corollary 6.7 (Bianchi Identity). h*dQ =0

Proof.

1
WdQ = h*d(dw + 5 [w,0]) + h* [dw,w] = [h*dw, h*w] = 0

since h*w =0 O

Let’s define d¥ : Q& (P, V) — Q5 (P, V) by dV = h*d. Then, unlike d, d¥ need not be a differential, and the
obstruction is the curvature:

Proposition 6.8. Va € Q% (P, V), dV(dVa) = p(Q) A a

Proof.

d¥a =da+ pw) Aa
= dV(dVa) = d(da+ p(w) A a) + pw) A (da + p(w) A a)
= p(dw) AN a — p(w) Ada + p(w) A da + p(w) A p(w) A «

pldw) Ao+ = [p(w), p(@)] A c

2
= p(dw + % [w,w]) A
=p(Q) AN

14



Exercise 6.9. Write F,, = sQ). Express F, in terms of A, = siw and relate Fy, Fg on Uyp # 0

7 Homogeneous spaces and Invariant Connections I

Let G be a Lie group acting transitively on a manifold M, Pick a € M and let H C G be the stabiliser subgroup.
It is a closed subgroup, and then M = G/ 77> where the diffeomorphism is G-equivariant and G O G/ 7y is induced
by left multiplication in G. If g € G, we let ¢4 : M — M denote the corresponding diffeomorphism. If X € g,
we define a vector field {x € X(M) by

(ExS)m) = 2§ (Gexpicrxy(m)

t t=0

Then [£x,&y] = x,v)-

Since H stabilises a € M, Vh € H, (¢p)« : TaM — T,M, and we get a Lie group homomorphism X : H —
GL(T, M) called the linear isotropy representation. We will use the same notation for the induced Lie
algebra rep A : b — gl(T, M). Evaluating at a € M, we get a surjective linear map g — 7, M, X — (x|, whose
kernel is b.

Definition 7.1. We say that G/H is reductive if the short exact sequence
0—=bhb—=9g—=>T,M —0

splits as H-modules. In other words if 3m C g such that g ® m and Vh € H, Ady, : m — m. In that case
T, M = m as H-modules.

If g € G and ¢, € Diff (M), we define ¢4 - f = f o py-1 and ¢y - £ = (¢g)«& where
((¢g)+&)a = ((¢g)*)¢51(a)§¢;1(a)
It follows that

¢g‘(Xf):(¢g'X)(¢g'f)
¢g(fX):(¢gf)(¢gX)

Now let V be an affine connection, (i.e. VixY = fVxY, Vx(fY) = X(f)Y + fVxY) . Let ¢ € Diff(M).
Define V¢ by

VLY =6 Vyrx(67Y)

Lemma 7.2. V? is an affine connection

Proof.

V?XY =¢ Vy-1.4x)(07'Y)

=¢-Vig-1.p)4-1x)(07Y)
=¢- (¢ fVgrx(¢7"Y)
=(¢- 07 )¢ Vorx(¢7'-Y)
= fV4Y

V+X2(fY) =6 (Vo-1.x0~ ' (FY))
=¢- (Vor.x(97 ' )(97'Y))
=¢- (07" X)(@ ' N P™'Y) + (67 f)Vy1x(¢7'Y))
= (- ¢ - X(N)¢- 07" V) +(¢-¢7" - f)Vsrx(¢7Y)
= X(f)Y + VLY
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Definition 7.3. An affine connection V on a reductive homogeneous M = G/H is said to be G-invariant

ifVg € G, V% =V. ie
¢g - VxY =V4,x(05Y)
If H ={e},M = G, then V is left invariant if

Ly-VxY =V, x(Ly-Y)

Suppose that X,Y are left invariant , so that Ly - X = X, L, -Y =Y. In that case, the left invariance of
V implies that VxY is also left invariant. Now, on a Lie group we may trivialise the tangent bundle via left
translations. That means that we have a global fram (X1, ..., X)) consisting of left invariant vector fields. The
connection is therefor uniquely determined by n® numbers Ff] defined by

k
Vx, X; =Y THX,
k
These are the components relative to the basis {X;} of a linear map A : g — gl(g). The torsion and curvature

tensors are also left-invariant and are given in terms of A by

T(X,Y)=AxY —Ay X —[X,Y]
R(X,Y)Z = [Ax,Av] Z = Ax vZ

for LI XY, Z € X(G). We see that curvature measure the failure of A to be a Lie algebra homomorphism.

In particular, taking A = 0, we see tat there exists a flat connection with torsion given by T(X,Y) = — [X, Y]
relative to which LI vf on G are parallel (i.e. VX = 0). Of course, there exists another flat connection
annihilating the right-invariant vector fields.

8 Invariant Connections

What did we do last time? We were looking at Homogeneous spaces M = G/ i1, H < G a closed subgroup. We
had fibre

H->GS M

and for g € G we have ¢4 : M — M acting by multiplication, i.e. ¢4(a) = g-a. As a result of the quotient have
eH=0€e M st

Vh e H ¢p(0) =0

Then
(on)s : ToM — T,M

Hence we may make the following def:

Definition 8.1. The linear isotropy representation

X:H — GL(T,M)

is given by A\p, = (dn)«-

We also have the map

£:9— X(M)
Xl—)fX

s.t. [€x,8y] = €x,y]. Composing with evaluation yields

evpoo€:g— Ty M
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where ker(ev, 0 §) = h C g. This is bijective so in fact

T,M = ;yh
and we get commuting diagram

Ad(h)

Y — %

Definition 8.2. An affine connection V on TM is G-invariant if

Vge G, V% =V
¢gVen = v¢g€(¢977)

If H={e},M = G, then V is left invariant if for all left invariant vector fields £x,&y Ve &y is also LI
This is then uniquely determined by its value at e. Hence V defines a bilinear map

gxg>g

(X,Y) = Ve by,
We can then curry a map as given o : g X g — g we can get

A : g — End(g)
X — AX
where Ax (V) = a(X,Y).

Exercise 8.3. Show that the torsion T and curvature R of A are left invariant and given by

T(X,)Y)=AxY — Ay X — [X,Y]
R(X,Y)Z = [Ax,Ay] Z — Aix v1Z
Note R is the obstruction to A being a Lie algebra homomorphism.

| Claim: 3 a LI connection V corresponding to A = 0.

m=T,M

Such A is flat, but has torsion T(X,Y) = —[X,Y]. As such V is characterised by V LI £, V€ = 0. Now let
H # {e} be closed and reductive: g = b @ m where Ady(m) C m. Note m & E/h, so in the previous case

Aside. There is a "holonomy principle” that

{G-invariant tensor fields on G/H} & {Ad(H)-invariant tensor on m}

This comes about, as if we take a tensor T at o, we can define a tensor field on G/H by

T(a) = ¢gT
for and g € G s.t. ¢g0 =a. Then if we have another representative g' then
g ' €EH & ¢y10=0
s0
T=¢41,T
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Claim: An invariant connection V is determined by a bilinear map
a:mxm—m

which is H invariant, the Nomizu map.

We can take natural coordinates for M in the neighbourhood V' C m of o by exponentiating m. The
projection 7 is a local diffeo on U = exp(V).
In a basis for m, {e;},

V-=U
Zmiei > exp (Z a:ie,l)
Now Vg € U, 7(g) = ¢4 - 0, Let V = {¢, - 0o|g € U}. For X € m define £x € X(V) by
(€x)pg0 = ((Bg)s)o(ms)e X

=((moLy)s)eX = (ﬂ'*)gX;

where X7 is the LIVF defined by XL}C = X. Hence {x is m-related to X©. Then [£x,&y] is m-related to
(XL VE] =[x, Y]
Now let W C V s.t. Vh € H, Ad;, W C V, and def W accordingly. Then for h € H, ¢5, : W — V. As such

¢h¢g 0= ¢h¢g¢lﬁl¢h Y
= ¢hgh_1 -0 € V

We will now need the following lemma

Lemma 8.4. Vg € exp(W), h € H,
(¢n)«€x = &aa, x

at @40, i.e. at all point in V.

Proof.

[(Dr)Ex] 0,00 = (D1)+(6X ) 040

= (¢n)x(dg)smeX

= (Png)smX

= (Prgh—1)«(Pn)«m X

= (Ead(h) X)), 10 = (EAds X )pnego

recalling the commuting diagram

T.M O 7o

~] i i
m-——mm

Lemma 8.5. Let X,Y € m, and &x,&y € X(V). Then [Ex,&y]|, = m [X, Y],

Proof. We saw above that [(x,&y] is m-related to [XL,YL] = [X, Y]L. Hence [£x,&y] = {x,y] and
evaluating at o € M gives

[€x,¢v]l, = €x .y, ‘0 + &xv, |, = x|, = T (XY,
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Theorem 8.6 (Nomizu). There is a bijective correspondence

{G-invariant affine connections on M} < {Ad(h)-invariant bilinear maps o : m X m — m}

given by o(X,Y) = Ve, &y,

Note 3! G-invariant connection V with « = 0, and this is called the canonical connection. If you curry this
map again you can show

T(X,Y) = a(X,Y) = a(Y,X) — [X, Y],
R(X,Y)Z = (X, (Y, Z)) — a(Y,a(X, 2)) — a([X, Y], Z) - [X, Y], Z

If « =0 we get

If T'=0, M is said to be symmetric.

9 Cartan Connections
Again consider homogeneous reductive spaces
H— G
lﬁ
M =Gy
With a local section o : U — G we can pull back the LI MC 1-form d¢ € Q'(G; g)
o*g € QY (U; g)
Recall the MC 1-form satisfies structure equation s
dda + % [Ya,9¢] =0
Then given two such sections o; we have
Ya € U, o2(a) = o1(a)h(a)

for some h : U — H, a uniquely defined function.

Lemma 9.1.

oivg = Ad(h™Y) - 019 + b0y

Proof. We will notationally use the idea of matrix groups but in general the proof works. Then

0"y = o Yo .

Then
o3da = 05 tdoy
= (o1h) " td(o1h)
= h7 oy Y(doyh + o1dh)
=h~ (o7 'do1)h + b~ dh
so done. 0
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As we are in the reductive case, g = h@m and we can decompose. Write o79g = 01 +w; for 6; € QY(U,m), w; €
QYU,p). Then

0o + wy = Ad(h)_1(91 + wl) + h*9y
SO

6, — Ad(h) 6,
Wy = Ad(h)_lwl + h*9g

decomposing. Hence 65 transforms as a tensor, wo as a gauge field. Now if we let ¢ = o7 and the structure
equation becomes

1
d(9+w)+§[9+w,9+w]:0

1 1
d9—|—dw+§[9,9]+§[w,w]+[w,9] =0

As such decomposing

1 1
df + 5 [0, 6], + [w,0] = 0 = O = df + [, 0] = —2 [0.6],,
1 1 1 1
dw + 5 [0.6], + 5 [w,w] = 0 = Q=do+ 5 w,w] = =5 0,0,

As such

®(€X7£Y) = - [X7 Y]m
Qéx, &) = - [X, Y]

Gauge fields for the canonical invariant connection on G/ Iy are 0.

With this motivation with us, the Cartan connections are going to be generalisation of these where in the
gauge field descriptions these are local 1-forms on the base. The Cartan viewpoint is to view T'M not as a
linear rep of GL(n,R), but as a homogeneous space of the affine group A(n,R) =2 GL(n,R) x R™ such that

M = AR Ry

Definition 9.2. A Cartan gauge (def from Sharpe, Jose doesn’t like) with model G/ ‘g on M is a pair
(U, 0) where U C M open and 6 € QY(U,g) satisfying regularity

T.M % g2 g

18 an isomorphism Va € U.

This is the analogue of a chart

Definition 9.3. A Cartan atlas is a collection of Cartan gauges {(Uy,04)} st
e U, U =M
e on Uy
03 = Ad(h_3)0a + hiysOn

for some hag : Uag — H.

This is very analogous to atlases.

Definition 9.4. Two atlases are equivalent if their union is an atlas.
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Definition 9.5. A Cartan structure on M is an equivalence class (equivalently mazimal atlas) of Cartan
atlases. A Cartan geometry is a manifold M together with a Cartan structure.

Definition 9.6. The curvature of a Cartan gauge (U,0) is Q € Q*(U, g) given by

Q=db+ = [9 0]

If I have a Cartan atlas, I can ask how respective curvatures €2, change on overlaps.

Lemma 9.7. On U,

Qp = Ad(h;5)Q

Proof.

05 = Ad(h )00 + W9

= ds + 5  (05,05) = d | Ad(hZ1)60 +h2s0m | + 2 [Ad( 300 + B, Ad(h})00 + Bl
—_——
hyrahas

1 1

— Ad(h;3)d0 — [Ad(h )60, WogOn | = 5his (91, 0) + 5 Ad(hzh) [Pas 6a]

3 |

2

— Ad(h )(d9 + 2 [oa,eo

+ 5 [PagPn, Bapn] + [Ad(h)00, Hsg0 |

Hence setting Q, = 0 is an extrinsic statement of an atlas.

Definition 9.8. A Cartan structure is flat if Vo, Q4 =

Example 9.9. Flat Cartan structures:
e G = G/ with (Uy, 079¢)
e an open subset V C G/H as above.

e I' C G acting by covering transformations, locally like G/H.

Definition 9.10. A Kliein geometry G/H has kernel K : the largest subgroup of H that is normal in G.
If K =1 we say that G/H is effective. If K is discrete we say the geometry is locally effective.

G
Lemma 9.11. If K # 1 then ( /K>/(H/K) is effective.

Proposition 9.12. If G/H is effective, and Ik : U — H s.t. 0 = Ad(k~') -0 + k*9g, then k= 1.
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This means that, given a Cartan atlas {(Ua,0,)} modelled on an effective G/ 77> then in overlaps Uag,
0 = Ad(ha_é) 0 0n + hiz0n for a unique hag : Usg — H. Indeed if 05 = Ad(ﬁ;é) 00, + iLzﬁﬁH, then letting
k= ?L;éhaﬁ we would have
0o = Ad(h5L) 005 + b0
= 05 = Ad(h,}) o [Ad(h3)) 0 05+ Bsadin| + s
= Ad(k™") 0 g + Ad(h}) o b, 0m + hiygdn

k*9 g

It follows from uniqueness then that {hag : Uyg — H} defines a (Cech) cocycle. Therefore they are the transition
functions of a principle H-bundle P = M, where P = I_Ia({o‘} X Ua x H) ~, (a,a,h) ~ (B, a, aﬁ( a)h), and
7(a,a, h) = a. The right action is given by r1,[(v, a, h)] = [(a, a, hh)]. This is well defined since the identification
uses left multiplication.

Let X € h. Then X* € X(H) is the corresponding LIVF. We extend it to U x H as (0, X*) = ¢x € X(Ux H).

Since X* is LI and the identifications involve left multiplication the vector fields £x glue to give a well defined
vector field {x € X(P). We then have

Lemma 9.13. Letry, : P — P denote the right action of h € H on P. ThenVX € b, (r1)+{x = Eaamn)—1x-

Proof. 1t is sufficient to check locally on U x H. Here rj, = id X Ry, where Ry, : H — H is right multiplication
by h. Let Ly : H — H be left multiplication and then on U x H we have

(rn)s€x = (id xRp).(0, X*)
= (0, (Rn).X")
= (0, (rp)«(Lp-1)« XT) since X% is LI
= (0,(Ad(h™1) - X)F)
= &Ad(n)-1X

O

The Cartan atlas (Uy,6,) does not first just give P > M, but also a one-form w € Q!(P;g) defined locally
by

w: T(a,h)(Ua x H) = T,Uy xbh) =g
(v,9) = (0,05 (y)) = Ad(h™ )04 (v) + 91 (y) = wa(v,y)

On overlaps, we also have wg(v,y) = Ad(h™)05(v)+9 5 (y). The transition function is then Uygx H Jag UapxH
sending (a,h) — (a, hag(a)~'h).

We will claim that the w, glue together properly to give a consistent w. To prove this we will need a
preparatory lemma:

Lemma 9.14. Let p: H x H — H and ¢ : H — H denote multiplication and inversion as groups maps
on H. Letting 9 € QY(H;b) be the LI MC one-form we have

Vo € Tny ny) (H x H), (" 05)(v) = Ad(hy ") 0w ((pr1)«v) + 9u((pra).v)
Yo € ToH, (i*0m)(v) = — Ad(h)0x (v)

Proof. 1t is simpler notationally for matrix groups where Jg|, = h~'dh. Hence
i*Opl, = hdh™' = —hh~'dhh™' = — Ad(h) 9|,
Moreover we have

15 OH |y yy = (Prh2) "' d(hahe) = hy thy?dhyhy + +hy tdhy = Ad(hy ') Daly,, + Oul,,
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Now we are ready to state what we want:

Proposition 9.15. The following diagram commutes:

ToUnp x ThH —22% s ToUng X Ty (ay-1nH

RN

(a,hap(a)™ h) = (idopri, o (i o hag o pr1 X pra))(a,h), so that if

Proof. We notice that f.g(a,h) = =
0,Y) = (0, s (35 © (hap)v,¥)) € ToUap X T 4(a)-11H. Hence

(U7y) € TaUaﬁ X ThHa (faﬂ) (

(@8 © (fap) ), ) = Wa (v, fa (i © (Rag)uv,y))
— Ad(hap(a) " h) " 05(0) + O (s (i © (hag)av, )

Using the lemma we have that

I (px(is © (hap)v,y)) = (W IH)(ix(hap) v, y)
= Ad(h™ )91 (ix (hap)<v) + Iu (y)
Va (ix(hap)ev) = (I"01)(h5pv)
= — Ad(hag(a))(hgpdm)(v)

Hence

(wg 0 (fap)e)(v,y) = Ad(h) ™" Ad(hap(a))8s(v) — Ad(h) ™ Ad(has(a))(hasdm) () +Om(y)

—~

= Ad(h)* ( 5(a)) [05(v) — (Rig0w) (V)] +Vu(y)
= Ad(h)™! 004 (v) +Iu(y)
:Wa(vay)

Definition 9.16. The one-form w € Q(P;g) is called a Cartan connection

Proposition 9.17. The Cartan connection w € QY (P;g) obeys the following:
1. ¥p € P, wy, : T,P — g is a vector space isomorphism
2. Vh € H, rjw=Ad(h™)ow
3. VX ehwliéx)=X

Proof. We may separate the proof:

1. dim P = dim H + dim M = dim h + dim g/b = dim g, so it suffices to show that w, is injective. Now
if (v,y) € T,U x T, H is such that w(v,y) = Ad(h~1)0(v) + I (y) = 0, we have Ad(h~1)0(v) =
—95(y) € h and hence 0(v) € Ad(h)h = b = pr;yhﬂ(v) = 0. By the regularity property of 0, v = 0.
Hence ¥ (y) = 0, but as ¥y is injective, we have y =0

2. Tt is sufficient to check in a Cartan gauge (U,0). Let (v,y) € T,U x T, H. Then for k € H:

(rkw) (v,y) = w(v, (Re)+y) = Ad(hk) ™" 0 0(v) + O ((Re)+y)

23




and using Rj¥y = Ad(k™1) oy

(riw)(v,y) = Ad(k™") Ad(h)"10(v) + Ad(k™")0u (y)
= Ad(k™") [Ad(R)"'0(v) + Vu(y)]
= Ad(k™w(v,y)
3. In a Cartan chart £x = (0, X%) € X(U x H), hence

wEx) =Ad(h)7100) +9g(XH) =0+ X =X

Remark. Properties 2 and 3 are reminiscent of an Ehresmann connection except that w takes values in g
not b.

Notice that if {(Ua,0a)} is a Cartan atlas trivialising P, then if s, : Uy — P|;; are the canonical sections,
sala) = [(a,e)], (stw)(v) = w(v,0) = O4(v). So O, are the ’gauge fields’ of the Cartan connection. Let
Q = dw+ 1 [w,w] € Q%*(p; g) denote the curvature of the Cartan connection. Then s5Q = df, + % [0, 04].
Hence bundle automorphisms of P (covering the identity) are the gauge symmetries of the Cartan geometry.

Remark. w parallelises P, just like Y parallelises G in the Klein model. Given X € g we get a vector field
Ex € X(P) defined by &x|, = w, (X)), but unlike the case of (G,9¢g). this is not a Lie algebra morphism.
This is despite that for X € h,Y € g we do have [{x,8y] = {x,y]- The curvature w is the obstruction to
X — &x defining a Lie algebra morphism g — X(P). To see this, calculate

w(éx,y) —w(éx,éy]) = [X, Y] + (dw(éx,Ey) — Exw(éy) + Evw(éx))
= [X, Y]+ (dQ(6x, &) — [w(éx),w(éy)]) +ExY — & X
= [X, Y]+ Q(x,&y) — [X,Y]
= Q(¢x,8y)

We can now give the standard definition of a Cartan geometry modelled on a Klein geometry:

Definition 9.18. A Cartan geometry (P,w) on M modelled on G/H consists of the following:
1. a principal H-bundle P — M
2. w € QP;g) satisfying

(a) ¥p € Pw, : T,P — g is a vector space isomorphism
(b) Vh € H, riw = Ad(h~Yw
(c) VX ebh,w(éx)=X

Definition 9.19. Let Q = dw + § [w,w] € Q*(P;g) be the curvature of w. Then projection Pros, © Qe
0% (P; g/h> is the torsion of w. The Cartan geometry is torsion free if Q € Q2(P;h)

Lemma 9.20. Let (P,w) be a Cartan geometry on M modelled on G/H. Let v : P — H be a smooth and
[+ P — P be such that f(p) = ryp)(p). Then f*w = Ad(ypVw +¢*Fg and f*Q = Ad(y) o Q.

Proof. The expression for f*() follows from that of f*w. To calculate f*w, we work relative to a Cartan
gauge (U,0) on U x H. Then f : U x H — U x H by f(a,h) = (a,hp(a,h)) can be written as f =
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(id opry, p o (pra x v)). Hence if (v,y) € T,U x T, H

fo(v,y) = (v, (Y, P (v, 9))) € ToU X Thyp(a,ny H
= (f*w)(v,y) = w(v, (Y, Y« (v, 9)))
= Ad(h(a, h)) ! 0 0(v) + Iar (1 (y, e (v,9)))
= Ad(y ™) o Ad(h™1) 0 0(v) + (W Im) (Y, ¥ (v, y))
= Ad(p™) o Ad(h™1) 0 O(v) + Ad(¥ ") 0 Im (y) + I (¥ (v, y))
= Ad(y ™) o [Ad(h™1) 0 8(v) + I (y)] + (V" Im)(v,y)
— [Ad($™Y) ow + ¥ k] (v,9)

Corollary 9.21. Q is horizontal, i.e. if either u,v are tangent to the fibre, Q(u,v) = 0.

Proof. Let u,v € T, P and v tangent to the fibre. Let ¢ : P — H be any smooth map sending p — e s.t.
(h4)pv = —wp(v) € h. define f: P — P by f(q) = q-¢(q). Then from the previous lemma we have that
peP

ffo=AdW Hw +* 0y = w + ¢ 9y
=0
Hence
wp(fxv) = wp(v) + I (Yuv) = wp(v) —wp(v) =0

= fiv=0
= Qu,v) = Qfuu, fiv) = Q(fiu,0) =0

It follows that © defines a 2-form on 11, /ker T, = T TM.

Note that each fibre F' of P is identified with H up to left multiplication by some element of H. Since 9y is
left-invariant, it defines a ”Maurer-Cartan” form ¥z on the fibre. The fact that VX € h, 9p({x) = X shows
that ¥p = w|p. It then follows that {2 vanishes when restricted to any fibre. As such we can interpret a Cartan
geometry (P,w) as deforming (G,¥¢) in a way that fibrewise we still have (H,¥p).

The tangent bundle of G/ 77 is a vector bundle associated to G' — G/ 7 via the linear isotropy representation
Adg/h :H — GL(Q/[] s.t. T(G/H) ~ G xy g/h' In a similar way, the tangent bundle of a Cartan geometry

(P, w) modelled on G/ I is isomorphic to an associated vector bundle P x g g/b'

Proposition 9.22. Let (P,w) be a Cartan geometry on M modelled on G/H. There is a canonical bundle
isomorphism ¢ : T M =p X [ g/h such that Vp € 771 (x), Jop : T M — g/h a H-equivariant vector space
isomorphism s.t. Yh € H, o, = Ad(h™1) 0 ¢,

Proof. Consider the diagram

(m)p

0 —— T,(F,) — T,Pp —— T, M —— 0

|
l’ﬁH %lm = 33!'55’1)
v

0 h g —~ 9% 0

IR
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If v € T, M, we may write v = (7,)p(v) = (74)pn((rn)su) for some u € T,P. Thus

Ppn(v) = @pn () pn ((rn)u))
= p(wpn((rn)«w))
= p(Ad(h) ™" o wp(u))
= Ad(h) ™! (p((m)pu))
= Ad(h) " pp(v)

This allows us to define a bundle map

qg: Pxg—TM
(p, X) = (n(p), ¢ (p(X)))

Then
q(ph, Ad(h) ' X) = (m(ph), ¢,y (p(Ad(h) ' X))
= (n(p), (Ad(H)ppn) "' p(X))
= (m(p), ¢, (P(X)))
=q(p, X )
Hence ¢ induces §: P xg G/h — T'M, which covers the identity and is a linear iso on the fibres. O

Corollary 9.23. Let (P,w) be a Cartan geometry on M modelled on G/H, Then vector fields § € %(M)
are in bijective correspondence with functions & : P — G/h such thatVp € P,h € H, £(ph) = Ad(h~1)o&(p)

by

£ €= {p € P = pp(&n(p)) € g/h}

Definition 9.24. The curvature function K : P — Hom(AZEVb,g) of a Cartan connection w is defined
by

Vp € P,VX,Y €g, K(p)(X,Y) = Qp(w; H(X),w; 1(Y))

p

Lemma 9.25. The curvature function is well defined and is H -equivariant, i.e.

Vh € H, K(ph)(X,Y) = Ad(h~))K (p)(Ad(h) X, Ad(R)Y)

Proof. Fix p € Pandlet X = X + W, Y =Y + Z for some W,Z € . Then Q p(wy LX), w; 1Y)

»“p
Qp(w, 1 (X),w, ' (Y)) since Wy Y(Z),w, ' (W) are tangent to the fibres and Q is horlzontal Therefore K (p)

Hom(Agg/h g). The equivariance follows from the equivariance of w, 2.

Om |l

It follows that the curvature of a Cartan connection defines a curvature section of the bundle
Pxpy Hom(AQQ/b, g).

Proposition 9.26. A Cartan connection is torsion free iff the curvature function takes values in

Hom (Azg/b, h) C Hom (AQEV[,J, g) .

Exercise 9.27. Show that K (p)(X,Y) = [X,Y] — wp([w, ' X, w, 'Y])
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Lemma 9.28 (Bianchi identity). d2 = [, w]

| Proof. Follows Mutatis Mutandis as for Ehresmann connections. O

Let V be a vector space and f : P — V a function. A Cartan connection w € Q(P; g) defines a universal
covariant derivative as follows: if X € g and if {x = w™1(X), then Dxf = xf. Since this is linear in X € g,
we get

D:Q%P;V) = QUP;V @ g")
f Df
where we define D f by (Zx)*Df = Dx f for

iX:V®g*—>V
ven—n(X)v

Definition 9.29. Let p: H — GL(V) be a representation. We define
QF(P;p) = {a e QX (P;V)|Vh e H, ria=p(h™)oa}

the k-forms on P transforming according to p.

Proposition 9.30. D : Q°(P; p) — QY(P; p) = QO(P; p ® Ad¥)

Proof. Let p€ P, X € g, f € Q°(P;g). Then

(ix)«(ri(Df)(p) = (ix)(Df(ph))
= (Dx f)(ph)
=W (X)f

Now rjw = Ad(h™) ow = wpp o (rp)« = Ad(h™) owp = (rp-1)s 0 wp_hl =w, ' o Ad(h) so

(ix)(rh(DF))(p) = [(ra)swy,  (Ad(R)X)] £
IfY € X(P) we have
(ra)Y)f =Y (i f) =Y (p(h™Y) - f) = p(h™HY f
so taking ¥ = wy ' (Ad(h)X) yields
[(rn)y, (AA(R)X)] f = p(h™)w,  (Ad(R)X) f = p(h™") Daagnyx f

and so

(ix)«(riDf)(p) = p(h~")Daagnyx f

O

Even if (V, p) is irreducible, (V ® g*, p ® Ad”™) need not be. Decomposing V @ g* into irreducibles decomposes
D and in this way we get 'famous’ differential operators such as 9,9, V-, V x.

Lemma 9.31. Let X € b and f € Q°(P;g). Then (ix).Df = —p.(X)f where p, : h — End(V) is the
LA hom induced by p: H — GL(V)
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Proof.

9.1 Reductive Cartan geometries

Now assume that (P, w) is reductive, s.t. g = h@dm with Ad(H)m C m. Then the Cartan connection decomposes
as W = Wy +Wwm, so does the Cartan gauge 6 = 0y + 0y, and so does D= l~)h—|—l~)m. Iffor X e h, Dxf = —p(X)f,
then Db = —p. As we will see below, D,y defines a Kozul connection on any associated vector bundle P x g V.
It follows from the defining properties of a Cartan connection that wy € Q(P;h) is the connection one-form
for an Ehresmann connection on the principal H-bundle P — M. In contrast, the component wy € Q!(P;m)
satisfies

1. It is horizontal, i.e. VX € h, wn(Ex) =0
2. riwm = Ad(h™1) own

The above two mean that wy, induces a one-form on M with values in the associated vector bundle P X g m,
which is isomorphic to TM. Thus wy, is a soldering form on P.
As w splits, so does Q2 = Qy + €, where the structure equation Q = dw + % [w,w] gives

1 1

9 [wn, wp] + = [wmvwm]h

Qh:dLUh+ )

1
Qo = dwm + [wh, W] + 3 (Wi, Win]
Therefore, the h-component of the curvature of the Cartan connection is not necessarily the curvature of
the Ehresmann connection, but receives a correction from the soldering form:
QCartan _ QEhresmann 1
b = + ) [Wnu wm]h
whereas the torsion of the Cartan connection is not necessarily the torsion of the affine connection defined by
Wy

1
@Cartan _ anrtarl =0+ 5 [Wma Wm]m

Let’s now consider the universal covariant derivative D = Dh +Dm. The m-component defines a Kozul connection
on any associated vector bundle E = P x g V for (V, p) a representation of H. Indeed, let ¢ : T'(E) — Q°(P;p)
be the C'°°(M)-modules isomorphism. We define V¢ : I'(E) — I'(E) by the commutativity of the following
square:

I(E) —Y & 1(E)

v ~|v

fW(P;p)AAZ% Q%(p; p)

ie. Y(Ves) = 51/)(5), where ¢ is the horizontal lift of ¢, i.e the uniqu vector field on P s.t. (m)pC~ = Cr(p)

and wy(¢) =0

Proposition 9.32. V defines a Kozul connection on E

11s it clear why this vector field is unique
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Proof. V. is R-linear and if f € C*°(M), (7* f)( is the horizontal lift of f(, so we have Vycs = fV¢s.
Finally, to get that V is a derivation, see

B(Ve(fs) = Co(fs) = C(m* f(s)) = (™ vo(s) + (7 F)Ci(s)

= (C)Y(s) + (7)) (Ves) = $((Cf)s) + P(fV¢s)
=9((Cf)s + fV¢s)

Proposition 9.33. Let (U,0) be a gauge for a reductive Cartan geometry, o : U — P|,, the section such
that 0 = o*w, ¢ € X(U), and ¢ = o*® where ® € Q°(P;p). Then

Vo = ((0) — p(05(C) 9

is the expression of the covariant derivative of ® in the gauge (U, 6).

9.2 Special geometries

We may define ’special geometries’ via curvature constraints

Lemma 9.34. Let V C g be the vector subspace spanned by the values of the curvature form €. Then V
is a H-submodule

Proof. Let v = Q,(&p,mp). Then

Ad(h™" v = Ad(h™ ) (2 (&p, mp))
= (r1 Q) (&ps M)
= Qpr((T1) +&ps (TR)1p)

which is a value of O

In particular if V' C b is s.t. the Cartan geometry is torsion-free, then V' is is an ideal. If the geometry is
torsion-free and the action of H on b is irreducible, there are no special geometries arising from g-curvature

conditions. However, the H-modules Hom <A2 (g/h) ,h) need not be irreducible and we can define special ge-
ometries by damnding that the curvature function K : P — Hom (A2 (Q/h) , b) takes values in a H-submodule.
If H is compact, then Hom <A2 (EV[)) ,h) is fully reducible

Example 9.35. g = s0,, x R"” and h = s0,,. Have Hom (A2 (%) ,b) = Hom(A2R", s0,,).

The subspace corresponding to those curvature functions obeying the (algebraic) Bianchi identity breaks up
into three submodules: scalar, trace-free Ricci, and Weyl.

Cartan connections are special types of Ehresmann connections. Let P — M, G — G/ 'y, be principal H-
bundles. There is an associated fibre bundle @ = P x g G where H acts on G by left multiplication. This is a
(right) principal G-bundle and M, and we have a natural inclusion P C @ sending p — (p,e). An Ehresmann
connection on () is a g-valued one-form and its restriction to P gives a candidate for a Cartan connection on P.

Theorem 9.36. Let G/H be a Klein geometry and let P,Q be principal H, G-bundles respectively over a
manifold M. Assume that dim P = dim G and ¢ : P — @ is a H-bundle map. Then there is a bijection of
sets

{ Ehresmann connections on Q, kernels not ,(TP)} £ { Cartan connections on P}

Proof. Let w € 2(Q; g) be an Ehresmann connection s.t. @, (T P)Nkerw = 0. It follows that w = p*w €
Q' (p; g) with zero kernel. Since dim P = dim g, w,, : T,P — g is injective and so an isomorphism.
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Since ¢ : P — @ is a H-bundle map, VX € h the vector fields £x on P and (x on @ are p-related : i.e
Vp € P, (p)p€x(p) = Cx (¢(p)
Also,
rw=rio*w = p*riw = p*(Ad(h ) ow) = Ad(h " Hop*w=Ad(h ) ow
so w is a Cartan connection. Next we define a correspondence
{Cartan connections on P} EN {Ehresmann connections on @, kernels not ¢.(TP)}
Given a Cartan connection w on P we extend it to a form w = j(w) on P x G by
T(pg) = Ad(g™") o Thw, + 10l

where mp,g : P x G — P/G are the canonical projections. We notice that VX € g, (0, Xy = X. Also,
ifi: P — P x G is the injection p — (p, €) then i*w = w. In particular, @ does not vanish on T'(P x {e}).
Let v € G and consider id xR, : P x G = P x G:

(id X By ) @ (p,gy) = D (p,gy) © (id X Rr)s
= (Ad(gy) ' o mpwp + mEUg) o (id X Ry«
= Ad(gy) towo (mp)« o (id xR, )s + Vg o (mg)« o (id X R, )«

= Ad(g7) " owo (7p)s +Yg © (Ry)x 0 (1G)s
— Ad(7)"" (Ad(g)~ o mhw + 759c)
=Ad(y)to @(p,9)

We now check that = is basic for P x G — P X g G which means that it is both horizontal and ’invariant’.
The latter condition requires that for ap, : P x G — P x G, (p,g) — (phh™'g), we have ajw = w. We
calculate
(@) (p.9) = P(ph,n—1g) © ()«

= Ad(h™tg) ' mhw o (ap)« + TEDG o (an)«

= Ad(h™'g)'wo (mp)x o (an)x + +Pc o (7G)x o ()«

— Ad(g™Y) 0 Ad(h) 0w o (). o (1p). + I 0 (Ln-1)s o (7).

=Ad(gHompw +mE¥e  (as Rjw = Ad(h)™'w and 9J¢ is LI)

= W(p,9)

To show w is horizontal, let X € h and £x € X(P x G) corresponding to the right H-action on P X G:

PxGxH—=+PxG
(p,g,h) = (ph,h~tg) = ((up % pg) o (id x id x1 x id) o (id XA x id) o )) (p, 9, h)
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where we have

0:PxGxH—-PxHxxG
(p,9,h) = (p,h,g)

dxAxid: PxGxH —-PxHxHxG
(p,h,g) = (p,h, h, g)

idxidxixid:PxHxHxG—-PxHxHXxG
(p,h h,g) = (p,h,h"", g)

pwp X pug: PxHXxHXG— PxG
(p,h,h™",g) = (ph,h™'g)

Then

(€x)(p,g) = (P X pg) o (id x id x1 x id) o (id XA x id) 0 0)),. (, 4.¢) (0,0, X)
= (up X pa)« o (id xid x1 x id), o (id x A x id)4 (p,e,9)(0, X, 0)
= (up X pa)« o (id xid x1 X id) 4, (p,e,e,9) (0, X, X, 0)
= (UP X @), (pre,e,g) (0, X, =X, 0)
= (1P)s,(p,e) (0, X), (16, (e,9) (— X, 0)
= (w, (X)), =(Vg)y 1 (Ad(g7H) X))
= W(p,g) (€x) = w(p,g)( 1( Jl _(19G) ( d(g~)X))
= (Ad(g™) - (mp ow) + 1&V6) (wy, H(X), —(Fa),  (Ad(g™ 1) X))
=Ad(gHX =Ad(gHX =0
Therefore @ descends to w € Q' (P x i G, g) and satisfies the properties of an Ehresmann connection which
in addition obeys ker @ N @, (T'P) = 0.
Finally, we need to show that ¢* and j are mutual inverses:

0 (§(wp)) = ¢*D(pe) = Ad(e) T 0 @ Thwp + P TGV
= (rpoy)*w,+0 (since mg o ¢ is constant) = wp

shows that ¢* o j = id. To do the other direction, it suffices to show ¢* is injective. Now if p*w = ¢p*ws
then wy, wy agree on the image ¢, (TP) and hence on all the right translations. But ty, ws agree on £x
and these two kinds of vectors span T'Q O
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